Skip to main content
Log in

The quantum and thermodynamical characteristics of fission taking into account adiabatic and nonadiabatic modes of motion

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In the framework of the quantum theory of spontaneous and low-energy induced fission, the nature of quantum and thermodynamical properties of a fissioning system is analyzed taking into account adiabatic and nonadiabatic modes of motion for different fission stages. It is shown that, owing to the influence of the Coriolis interaction, the states of the fissile nucleus and of primary fission products are cold and strongly nonequilibrium. The important role of superfluid and pairing nucleon-nucleon correlations for binary and ternary fission is demonstrated. The mechanism of pumping of high values of relative orbital momenta and spins of fission fragments for binary and ternary fission and the nonevaporation mechanism of formation of third particles for ternary fission are investigated. The anisotropies and P-odd, P-even, and T-odd asymmetries for angular distributions of fission products are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Goldberger and K. Watson, Collision Theory (Wiley, New York, 1964; Mir, Moscow, 1967).

    MATH  Google Scholar 

  2. K. Wildermuth and Y. C. Tang, A Unified Theory of the Nucleus (Academic, New York, 1977; Mir, Moscow, 1980).

    Google Scholar 

  3. A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, New York, 1974; Mir, Moscow, 1977), Vol. 2.

    Google Scholar 

  4. O. P. Sushkov and V. V. Flambaum, Usp. Fiz. Nauk 136, 3 (1982) [Sov. Phys. Usp. 25, 1 (1982)].

    Google Scholar 

  5. V. E. Bunakov and V. P. Gudkov, Z. Phys. A 321, 271 (1985).

    Article  Google Scholar 

  6. A. L. Barabanov and W. I. Furman, Z. Phys. A 357, 441 (1997).

    Article  Google Scholar 

  7. S. G. Kadmensky, Yad. Fiz. 66, 1259 (2003) [Phys. At. Nucl. 66, 1219 (2003)].

    Google Scholar 

  8. S. G. Kadmensky, Phys. At. Nucl. 67, 2134 (2004); S. G. Kadmenskii and L. V. Rodionova, Phys. At. Nucl. 68, 1433 (2005).

    Article  Google Scholar 

  9. S. G. Kadmensky, Phys. At. Nucl. 65, 1785 (2002).

    Article  Google Scholar 

  10. S. G. Kadmensky, Yad. Fiz. 67, 167 (2004) [Phys. At. Nulc. 67, 170 (2004)].

    Google Scholar 

  11. S. G. Kadmensky, Phys. At. Nucl. 68, 184 (2005).

    Article  Google Scholar 

  12. J. R. Nix, Nucl. Phys. A 130, 241 (1969).

    Article  ADS  Google Scholar 

  13. V. A. Rubchenya, S. G. Yavshits, Yad. Fiz. 39, 416 (1984).

    Google Scholar 

  14. T. M. Schneidman et al., Phys. Rev. C 65, 064302 (2002).

  15. S. G. Kadmenskiĭ, V. P. Markushev, and V. I. Furman, Yad. Fiz. 35, 300 (1982) [Sov. J. Nucl. Phys. 35, 166 (1982)]; S. G. Kadmenskiĭ, V. P. Markushev, Yu. P. Popov, and V. I. Furman, Yad. Fiz. 39, 7 (1984) [Sov. J. Nucl. Phys. 39, 4 (1984)].

    Google Scholar 

  16. S. G. Kadmensky and W. I. Furman, Alpha Decay and Relative Nuclear Reactions (Atomenergoizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  17. N. Mollenkopf et al., J. Phys. G 18, L203 (1992).

    Article  ADS  Google Scholar 

  18. V. M. Strutinsky, Zh. Teor. Eksp. Fiz. 30, 608 (1956) [Sov. Phys. JETP 3, 644 (1956)].

    Google Scholar 

  19. S. G. Kadmensky, Phys. At. Nucl. 65, 1390 (2002).

    Article  Google Scholar 

  20. S. G. Kadmensky and L. V. Titova, Phys. At. Nucl. 68, 1421 (2005).

    Article  Google Scholar 

  21. Yu. N. Kopath et al., Phys. Rev. Lett. 82, 303 (1999).

    Article  ADS  Google Scholar 

  22. V. E. Bunakov et al., in Proceedings of the XIII International Seminar on Interactions of Neutrons with Nuclei, Dubna, Russia, 2005, Preprint JINR E3-2006-7 (JINR, Dubna, 2006), p. 293.

    Google Scholar 

  23. T. Ericson and V. V. Strutinsky, Nucl. Phys. 8, 284 (1958).

    Article  Google Scholar 

  24. L. M. Delves, Nucl. Phys. 9, 391 (1958); 20, 275 (1960).

    Google Scholar 

  25. N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions (Clarendon, Oxford, 1965).

    Google Scholar 

  26. A. I. Baz’ et al., Yad. Fiz. 25, 281 (1977) [Sov. J. Nucl. Phys. 25, 153 (1977)].

    Google Scholar 

  27. F. F. Tsang, Phys. Scr., A 10, 90 (1974).

    Article  Google Scholar 

  28. V. A. Rubchenya, Yad. Fiz. 35, 576 (1982) [Sov. J. Nucl. Phys. 35, 394 (1982)].

    Google Scholar 

  29. N. Carjan, J. Phys. (Paris) 37, 1279 (1976).

    Google Scholar 

  30. O. Tanimura and T. Fliessbach, Z. Phys. A 328, 475 (1987).

    Google Scholar 

  31. S. G. Kadmensky, Phys. At. Nucl. 68, 1968 (2005).

    Article  Google Scholar 

  32. V. G. Neudachin and Yu. F. Smirnov, Nucleon Clusters in Light Nuclei (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  33. A. G. Valshin et al., Yad. Fiz. 33, 939 (1981) [Sov. J. Nucl. Phys. 33, 494 (1981)].

    Google Scholar 

  34. S. G. Kadmensky, Yu. M. Tchuvilsky, Yad. Fiz. 38, 1433 (1983) [Sov. J. Nucl. Phys. 38, 872 (1983)].

    Google Scholar 

  35. M. Mutterer et al., in Proceedings of the 2-nd International Conference on Fission, St. Andrews, Scotland, 1999, p. 98.

  36. M. Mutterer and J. P. Theobald, Dinuclear Decay Modes (IOP, Bristol, 1996).

    Google Scholar 

  37. S. G. Kadmensky, Yad. Fiz. 66, 1739 (2003); 67, 258 (2004) [Phys. At. Nucl. 66, 1691 (2003); 67, 241 (2004)].

    Google Scholar 

  38. V. E. Bunakov and S. G. Kadmensky, Yad. Fiz. 66, 1894 (2003) [Phys. At. Nucl. 66, 1846 (2003)].

    Google Scholar 

  39. P. Jesinger et al., Nucl. Instrum. Methods Phys. Res. A 440, 618 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kadmensky.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadmensky, S.G. The quantum and thermodynamical characteristics of fission taking into account adiabatic and nonadiabatic modes of motion. Phys. Atom. Nuclei 70, 1628–1633 (2007). https://doi.org/10.1134/S1063778807090220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778807090220

PACS numbers

Navigation