Skip to main content
Log in

What can we learn about baryon-baryon interaction from hypernuclei 6Λ H and 8Λ H?

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

At the LHE JINR, an original approach to hypernuclear experiments was elaborated to produce relativistic hypernuclei. The production cross sections and lifetimes, τ, of 3Λ H and 4Λ H were measured successfully. The results of recent experiments on 5H and 7H nuclei suggest that the hypernucleus 6Λ H might be stable and that this may be the case even for 8Λ H. The unique quality of the spectrometer SPHERE may be used to identify unambiguously the isotopes of hyperhydrogen—through their pionic decay AΛ H → π + AHe—including the new hypernuclei 6Λ H and 8Λ H with extreme values of N/Z of 4 and 6, respectively. The confirmation of the very existence of these neutron-rich hypernuclei would be a strong motivation to search for their spectra in strangeness and double-charge-exchange reactions (K stop , π +) at FINUDA or (π , K +) at J-PARC. It is very probable that, similarly as in 4Λ H, there is a low-lying state 1+ also in 6Λ H and 8Λ H. If their electromagnetic width (M1) is small enough, we could see two different values of τ for 6Λ H and/or 8Λ H. We investigate the spacings of the 1+ and 0+ states of 4Λ H, 6Λ H, and 8Λ H. The understanding of the structure of isospin asymmetric systems plays a key role in the description of systems as diverse as neutron-rich nuclei and neutron matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jonson, Phys. Rep. 389, 1 (2004).

    Article  ADS  Google Scholar 

  2. A. Richter, Nucl. Phys. A 751, 3 (2005).

    Article  ADS  Google Scholar 

  3. The Physics Case for EURISOL, Report of the Key Experiments Task Group.

  4. T. Bressani, in Proceedings of the International School of Physics “E. Fermi”, Course 153, 2003, p. 323.

  5. H. Bandō, T. Motoba, and J. Žofka, Int. J. Mod. Phys. A 5, 4021 (1990).

    Article  ADS  Google Scholar 

  6. R. Chrien and C. B. Dover, Annu. Rev. Nucl. Part. Sci. 39, 113 (1989).

    Article  ADS  Google Scholar 

  7. T. Hasegawa et al., Phys. Rev. C 53, 1210 (1996).

    Article  ADS  Google Scholar 

  8. M. W. Ahmed et al., Phys. Rev. C 68, 064004 (2003).

  9. L. Yuan et al., Phys. Rev. C 73, 044607 (2006).

  10. A. Gal, J. M. Soper, and R. H. Dalitz, Ann. Phys. (N.Y.) 113, 79 (1978).

    Article  ADS  Google Scholar 

  11. D. J. Millener et al., Phys. Rev. C 31, 499 (1985).

    Article  ADS  Google Scholar 

  12. V. N. Fetisov et al., Z. Phys. A 339, 399 (1991).

    Article  Google Scholar 

  13. Th. A. Rijken and Y. Yamamoto, Nucl. Phys. A 754, 27c (2005).

    Article  ADS  Google Scholar 

  14. M. Ukai et al., Phys. Rev. C 73, 012501(R) (2006).

  15. D. J. Millener, Nucl. Phys. A 691, 93c (2001).

    Article  ADS  Google Scholar 

  16. D. J. Millener, Nucl. Phys. A 754, 48c (2005).

    Article  ADS  Google Scholar 

  17. H. Tamura et al., Nucl. Phys. A 754, 58c (2005).

    Article  ADS  Google Scholar 

  18. R. H. Dalitz, in Proceedings of the International School of Physics “E. Fermi”, Course 38, 1967, p. 89.

  19. D. H. Davis and J. Pniewski, Contemp. Phys. 27, 91 (1986).

    Article  ADS  Google Scholar 

  20. A. A. Korsheninnikov et al., Phys. Rev. Lett. 87, 092501 (2001); 90, 082501 (2003).

  21. R. H. Dalitz, Nucl. Phys. A 754, 14c (2005).

    Article  ADS  Google Scholar 

  22. L. Majling, Nucl. Phys. A 585, 211c (1995).

    Article  ADS  Google Scholar 

  23. D. E. Lanskoy, in Proceedings of the International Seminar “Strange Nuclear Physics”, Osaka, 2004, nucl-th/0411004.

  24. K. Kubota et al., Nucl. Phys. A 602, 327 (1996).

    Article  ADS  Google Scholar 

  25. M. Agnello et al., Nucl. Phys. A 752, 139c (2005).

    Article  ADS  Google Scholar 

  26. M. Agnello et al., Phys. Lett. B 640, 145 (2006).

    Article  ADS  Google Scholar 

  27. P. K. Saha et al., Phys. Rev. Lett. 94, 052502 (2005).

  28. T. Bressani et al., Nucl. Phys. A 754, 410c (2005).

    Article  ADS  Google Scholar 

  29. P. Saha, T. Fukuda, and H. Noumi, Neutron-Rich A Hypernuclei by the Double-Charge-Exchange Reaction, LoI, J-PARC 03-6, 185.

  30. K. J. Nield, T. Bowen, G. D. Cable, et al., Phys. Rev. C 13, 1263 (1976).

    Article  ADS  Google Scholar 

  31. A. Abdurakhimov et al., Nuovo Cimento A 102, 645 (1989).

    Google Scholar 

  32. S. Avramenko et al., Nucl. Phys. A 547, 95c (1992).

    Article  ADS  Google Scholar 

  33. G. Keyes et al., Nucl. Phys. B 67, 269 (1973).

    Article  ADS  Google Scholar 

  34. H. Outa et al., Nucl. Phys. A 547, 109c (1992).

    Article  ADS  Google Scholar 

  35. J. Lukstins, Nucl. Phys. A 691, 491 (2001).

    Article  ADS  Google Scholar 

  36. S. Afanasiev et al., in Proceedings of the International Workshop on Relativistic Nuclear Physics: From Hundreds of MeV to TeV, Dubna, Russia, 2005, Preprint No. E1, 2-2006-30, JINR (Joint Institute for Nuclear Research, Dubna, 2006), p. 50.

    Google Scholar 

  37. T. R. Saito, Hypernuclei with Stable HI Beam Induced Reaction at GSI (LoI), http://gsi.de/document/DOC-2005-Feb-432-2.pdf.

  38. R. H. Dalitz and A. Gal, Nucl. Phys. B 1, 1 (1962).

    Article  ADS  Google Scholar 

  39. K. S. Myint and Y. Akaishi, Prog. Theor. Phys., Suppl. 146, 599 (2002).

    Article  ADS  Google Scholar 

  40. J. Okołowicz, M. Płoszajczak, and I. Rotter, Phys. Rep. 374, 271 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  41. G. Hagen, M. Hjorth-Jensen, and J. S. Vaagen, J. Phys. G 31, S1337 (2005).

    Article  ADS  Google Scholar 

  42. N. Michel et al., Phys. Rev. Lett. 89, 042502 (2002).

  43. J. Kotulič Bunta and Š. Gmuca, Phys. Rev. C 70, 054309 (2004).

  44. I. Bombaci, Nucl. Phys. A 754, 335 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Majling.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majling, L., Gmuca, Š. What can we learn about baryon-baryon interaction from hypernuclei 6Λ H and 8Λ H?. Phys. Atom. Nuclei 70, 1611–1616 (2007). https://doi.org/10.1134/S1063778807090190

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778807090190

PACS numbers

Navigation