Skip to main content
Log in

Calculation of the energy dependence of the fusion cross section and total cross sections for peripheral reactions on the basis of an analysis of data on elastic heavy-ion scattering: Strongly bound ions

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A method is proposed for calculating the energy dependence of the fusion cross section (in general, the sum of the cross sections for complete and incomplete fusion, quasifission, and reactions of deep-inelastic scattering) σ F (E) and the total cross section for peripheral (or quasielastic) reactions, σ D (E). The method is based on an analysis of a limited set of angular distributions for the elastic scattering in a given pair of nuclei. The predictive power of the method is illustrated by considering the 16O + 208Pb, 16O + 40Ca, and 16O + 28Si systems. For each of these systems, the calculations were performed at energies in the range extending from subbarrier values to those exceeding the barrier height substantially. The results of the calculations are found to be in good agreement with relevant experimental data, whereby the reliability of the method is confirmed. By virtue of this, it is proposed to employ the method to study the energy dependences σ F (E) and σ D (E) in collisions involving unstable nuclei, for which it is difficult to determine experimentally the above dependences because of a low intensity of secondary beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Pozdnyakov and K. O. Terenetskiĭ, Yad. Fiz. 53, 400 (1991) [Sov. J. Nucl. Phys. 53, 249 (1991)].

    Google Scholar 

  2. Yu. A. Pozdnyakov and K. O. Terenetsky, in Collection of Scientific Works of NAS of Ukraine, Kiev, Ukraine, 2001, No. 1(3), p. 31.

  3. Yu. A. Pozdnyakov and K. O. Terenetsky, Izv. Akad. Nauk, Ser. Fiz. 66, 435 (2002).

    Google Scholar 

  4. Yu. A. Pozdnyakov, Yad. Fiz. 65, 1877 (2002) [Phys. At. Nucl. 65, 1827 (2002)].

    Google Scholar 

  5. Yu. A. Pozdnyakov, in Collection of Scientific Works of NAS of Ukraine, Kiev, Ukraine, 2002, No. 1(7), p. 28.

  6. Yu. A. Pozdnyakov, Yad. Fiz. 66, 856 (2003) [Phys. At. Nucl. 66, 824 (2003)].

    Google Scholar 

  7. Yu. A. Pozdnyakov, K. O. Terenetsky, and I. V. Borodavko, Yad. Fiz. 59, 257 (1996) [Phys. At. Nucl. 59, 238 (1996)].

    Google Scholar 

  8. Yu. A. Pozdnyakov and K. O. Terenetsky, in Collection of Scientific Works of NAS of Ukraine, Kiev, Ukraine, 2001, No. 2(4), p. 26.

  9. Yu. A. Pozdnyakov, Izv. Akad. Nauk, Ser. Fiz. 64, 89 (2000).

    Google Scholar 

  10. V. M. Strutinsky, Nucl. Phys. 68, 221 (1965).

    Article  Google Scholar 

  11. G. H. Rawitscher, Nucl. Phys. 85, 337 (1966).

    Article  Google Scholar 

  12. Y. Eisen and Z. Vager, Nucl. Phys. A 187, 219 (1972).

    Article  ADS  Google Scholar 

  13. V. P. Verbitskiĭ, A. P. Il’in, Yu. A. Pozdnyakov, and K. O. Terenetskiĭ, Izv. SSSR Akad. Nauk, Ser. Fiz. 49, 945 (1985).

    Google Scholar 

  14. G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).

    Article  ADS  Google Scholar 

  15. Yu. A. Pozdnyakov and K. O. Terenetskiĭ, Ukr. Fiz. Zh. 35, 1158 (1990).

    Google Scholar 

  16. H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. M. A. Nagarajan, C. C. Mahaux, and G. R. Satchler, Phys. Rev. Lett. 54, 1136 (1985).

    Article  ADS  Google Scholar 

  18. C. Mahaux, H. Ngô, and G. R. Satchler, Nucl. Phys. A 449, 354 (1986).

    Article  ADS  Google Scholar 

  19. G. R. Satchler, Phys. Rep. 199, 147 (1991).

    Article  ADS  Google Scholar 

  20. Yu. A. Pozdnyako, in Collection of Scientific Works of NAS of Ukraine, Kiev, Ukraine, 2004, No. 2(3), p. 24.

  21. N. Keeley, S. J. Bennett, N. M. Clarke, et al., Nucl. Phys. A 571, 326 (1994).

    Article  ADS  Google Scholar 

  22. N. Keeley, J. A. Christley, N. M. Clarke, et al., Nucl. Phys. A 582, 314 (1995).

    Article  ADS  Google Scholar 

  23. S. C. Pieper, M. H. Macfarlane, D. H. Gloeckner, et al., Phys. Rev. C 18, 180 (1978).

    Article  ADS  Google Scholar 

  24. C. Olmer, M. Mermaz, M. Buenerd, et al., Phys. Rev. C 18, 205 (1978).

    Article  ADS  Google Scholar 

  25. S. D. Baker and J. A. McIntire, Phys. Rev. 161, 1200 (1967).

    Article  ADS  Google Scholar 

  26. J. B. Ball, C. B. Fulmer, E. E. Gross, et al., Nucl. Phys. A 252, 208 (1975).

    Article  ADS  Google Scholar 

  27. F. Videbaek, R. B. Goldstein, L. Grodzins, et al., Phys. Rev. C 15, 954 (1977).

    Article  ADS  Google Scholar 

  28. T. P. Sjoreen, F. E. Bertrand, R. L. Auble, et al., Phys. Rev. C 29, 1370 (1984).

    Article  ADS  Google Scholar 

  29. E. Vulgaris, L. Grodzins, S. G. Steadman, and R. Ledoux, Phys. Rev. C 33, 2017 (1986).

    Article  ADS  Google Scholar 

  30. K. O. Groeneveld, L. Meyer-Schützmeister, A. Richter, and U. Strohbusch, Phys. Rev. C 6, 805 (1972).

    Article  ADS  Google Scholar 

  31. K. E. Rehm, W. Henning, J. R. Erskine, and D. G. Kovar, Phys. Rev. Lett. 40, 1479 (1978).

    Article  ADS  Google Scholar 

  32. D. F. Geesaman, C. N. Davids, W. Henning, et al., Phys. Rev. C 18, 284 (1978).

    Article  ADS  Google Scholar 

  33. S. E. Vigdor, D. G. Kovar, P. Sperr, et al., Phys. Rev. C 20, 2147 (1979).

    Article  ADS  Google Scholar 

  34. C. Beck, D. G. Kovar, S. J. Sanders, et al., Phys. Rev. C 39, 2202 (1989).

    Article  ADS  Google Scholar 

  35. P. Braun-Munzinger and J. Barrette, Phys. Rep. 87, 209 (1982).

    Article  ADS  Google Scholar 

  36. D. M. Brink and N. Takigawa, Nucl. Phys. A 279, 159 (1977).

    Article  ADS  Google Scholar 

  37. S. Y. Lee, Nucl. Phys. A 311, 518 (1978).

    Article  ADS  Google Scholar 

  38. F. Brau, F. Michel, and G. Reidemeister, Phys. Rev. C 57, 1386 (1998).

    Article  ADS  Google Scholar 

  39. D. S. Gale, and J. S. Eck, Phys. Rev. C 7, 1950 (1973).

    Article  ADS  Google Scholar 

  40. J. G. Cramer, R. M. DeVries, D. A. Goldberg, et al., Phys. Rev. C 14, 2158 (1976).

    Article  ADS  Google Scholar 

  41. J. G. Cramer, J. C. Wiborg, Y.-D. Chan, et al., Nucl. Phys. Lab. Ann. Rep. (University of Washington, 1977), p. 83.

  42. G. R. Satchler, M. L. Halbert, N. M. Clarke, et al., Nucl. Phys. A 298, 313 (1978).

    Article  ADS  Google Scholar 

  43. P. Braun-Munzinger, G. M. Berkowitz, M. Gai, et al., Phys. Rev. C 24, 1010 (1981).

    Article  ADS  Google Scholar 

  44. V. Shkolnik, D. Dehnhard, and M. A. Franey, Phys. Rev. C 28, 717 (1983).

    Article  ADS  Google Scholar 

  45. M. C. Mermaz, E. R. Chavez-Lomeli, J. Barrette, et al., Phys. Rev. C 29, 147 (1984).

    Article  ADS  Google Scholar 

  46. L. C. Vaz, D. Logan, E. Duek, et al., Z. Phys. A 315, 169 (1984).

    Article  Google Scholar 

  47. B. B. Back, R. R. Betts, J. E. Gindler, et al., Phys. Rev. C 32, 195 (1985).

    Article  ADS  Google Scholar 

  48. T. Murakami, C.-C. Sahm, R. Vandenbosch, et al., Phys. Rev. C 34, 1353 (1986).

    Article  ADS  Google Scholar 

  49. C. R. Morton, A. C. Berriman, M. Dasgupta, et al., Phys. Rev. C 60, 044608 (1999).

    Google Scholar 

  50. M. Buenerd, C. K. Gelbke, B. G. Harvey, et al., Phys. Rev. Lett. 37, 1991 (1976).

    Article  Google Scholar 

  51. L. C. Vaz, J. M. Alexander, and G. R. Satchler, Phys. Rep. 69, 373 (1981).

    Article  ADS  Google Scholar 

  52. M. J. Rhoades-Brown and M. Prakash, Phys. Rev. Lett. 53, 333 (1984).

    Article  ADS  Google Scholar 

  53. G. R. Satchler, M. A. Nagarajan, J. S. Lilley, and I. J. Thompson, Ann. Phys. (N.Y.) 178, 110 (1987).

    Article  ADS  Google Scholar 

  54. R. Vandenbosch, ANL-PHYS-86-1, Argonne National Laboratory (1986), p. 155.

  55. I. J. Thompson, M. A. Nagarajan, J. S. Lilley, and M. J. Smithson, Nucl. Phys. A 505, 84 (1989).

    Article  ADS  Google Scholar 

  56. D. E. DiGregorio and R. G. Stokstad, Phys. Rev. C 43, 265 (1991).

    Article  ADS  Google Scholar 

  57. N. Vinh Mau, J. C. Pacheco, J. L. Ferrero, and R. Bilwes, Nucl. Phys. A 560, 879 (1993).

    Article  ADS  Google Scholar 

  58. C. V. K. Baba, Nucl. Phys. A 553, 719c (1993).

    Article  ADS  Google Scholar 

  59. G. R. Satchler, M. A. Nagarajan, J. S. Lilley, and I. J. Thompson, Phys. Rev. C 41, 1869 (1990).

    Article  ADS  Google Scholar 

  60. S. V. S. Sastry, S. K. Kataria, A. K. Mohanty, and I. J. Thompson, Phys. Rev. C 54, 3286 (1996).

    Article  ADS  Google Scholar 

  61. Y. Nagashima, J. Schimizu, T. Nakagawa, et al., Phys. Rev. C 33, 176 (1986).

    Article  ADS  Google Scholar 

  62. J. Dauk, K. P. Lieb, and A. M. Kleinfeld, Nucl. Phys. A 241, 170 (1975).

    Article  ADS  Google Scholar 

  63. W. J. Jordan, J. V. Maher, and J. C. Peng, Phys. Lett. B 87, 38 (1979).

    Article  ADS  Google Scholar 

  64. R. Rascher, W. F. J. Müller, and K. P. Lieb, Phys. Rev. C 20, 1028 (1979).

    Article  ADS  Google Scholar 

  65. R. A. Zingarelli, L. C. Dennis, M. A. Tiede, et al., Phys. Rev. C 48, 651 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Pozdnyakov.

Additional information

Dedicated to the blessed memory of my beloved wife Nataliya, who passed away tragically

Original Russian Text © Yu.A. Pozdnyakov, 2007, published in Yadernaya Fizika, 2007, Vol. 70, No. 9, pp. 1547–1560.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozdnyakov, Y.A. Calculation of the energy dependence of the fusion cross section and total cross sections for peripheral reactions on the basis of an analysis of data on elastic heavy-ion scattering: Strongly bound ions. Phys. Atom. Nuclei 70, 1500–1514 (2007). https://doi.org/10.1134/S1063778807090049

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778807090049

PACS numbers

Navigation