Skip to main content
Log in

Hydrogen-like atom with nonnegative quantum distribution function

  • Second International Workshop on Superintegrable Systems in Classical and Quantum Mechanics
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Among numerous approaches to probabilistic interpretation of conventional quantum mechanics (CQM), the closest to N. Bohr’s idea of the correspondence principle is the Blokhintzev-Terletsky approach of the quantum distribution function (QDF) on the coordinate-momentum (q, p) phase space. The detailed investigation of this approach has led to the correspondence rule of V.V. Kuryshkin parametrically dependent on a set of auxiliary functions. According to investigations of numerous authors, the existence and the explicit form of QDF depends on the correspondence rule between classical functions A(q, p) and quantum operator A. At the same time, the QDF corresponding to all known quantization rules turns out to be alternating in sign or overly complex valued. Finally nonexistence of nonnegative QDF in CQM was proved. On the other hand, from this follows the possibility to construct quantum mechanics where a nonnegative QDF exists. We consider a certain set of auxiliary functions to construct explicit expressions for operators O(H) for the hydrogen atom. Naturally, these operators differ from the related operator Ĥ in CQM, so that spherical coordinates are no longer separable for a hydrogen-like atom in quantum mechanics with nonnegative QDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Wigner, Phys. Rev. 40, 749 (1932).

    Article  MATH  ADS  Google Scholar 

  2. Ya. P. Terletsky, Zh. Eksp. Teor. Fiz. 7, 1290 (1937).

    Google Scholar 

  3. D. I. Blokhintzev, J. Phys. (USSR) 2, 71 (1940).

    MathSciNet  Google Scholar 

  4. I. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  5. C. L. Mehta, J. Math. Phys. 5, 677 (1964).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. L. Cohen, J. Math. Phys. 7, 781 (1966).

    Article  ADS  Google Scholar 

  7. T. S. Shankara, Prog. Theor. Phys. 37, 1335 (1967).

    Article  ADS  Google Scholar 

  8. V. V. Kuryshkin, Candidate’s Dissetation in Mathematical Physics (PFU, Moscow, 1969).

    Google Scholar 

  9. D. I. Blokhintzev and P. Nemirovsky, J. Phys. (USSR) 3, 191 (1940).

    Google Scholar 

  10. M. A. Mockulsky, Zh. Eksp. Teor. Fiz. 20, 688 (1950).

    Google Scholar 

  11. Yu. L. Klimontovich and V. P. Silin, Zh. Eksp. Teor. Fiz. 23, 151 (1952).

    Google Scholar 

  12. K. Imre, E. Ozizmir, M. Rosenbaum, and P. F. Zweifel, J. Math. Phys. 8, 1097 (1967).

    Article  ADS  Google Scholar 

  13. F. Bopp, Ann. Inst. Henry Poincare 15, 15 (1956).

    MathSciNet  Google Scholar 

  14. L. Cohen, Philos. Sci. 33, 317 (1966).

    Article  Google Scholar 

  15. H. J. Groenewold, Physica 12, 405 (1946).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. V. V. Kuryshkin, Izv. Vyssh. Uchebn. Zaved., Fiz. 11, 102 (1971).

    Google Scholar 

  17. V. V. Kuryshkin, Ann. Inst. Henry Poincare 17, 81 (1972).

    Google Scholar 

  18. V. V. Kuryshkin, Int. J. Theor. Phys. 7, 451 (1973).

    Article  MathSciNet  Google Scholar 

  19. V. V. Kuryshkin et al., Ann. Fond. L. de Broglie 3, 45 (1978).

    Google Scholar 

  20. Yu. M. Shirokov, Fiz. Elem. Chastits At. Yadra 10, 5 (1979) [Sov. J. Part. Phys. 10, 1 (1979)].

    MathSciNet  Google Scholar 

  21. M. Rotenberg, Ann. Phys. (N.Y.) 19, 262 (1962).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. A. V. Zorin et al., Bull. PFUR, Ser. Appl. and Comp. Math. 3, 106 (2004).

    Google Scholar 

  23. A. V. Zorin et al., Lecture Notes Comput. Sci. 3401, 613 (2005).

    Article  Google Scholar 

  24. I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  25. V. N. Samsonenko, Discussion Problems of Quantum Physics (PFUR Publ., Moscow, 1993), p. 116 [in Russian].

    Google Scholar 

  26. http://physics.nist.gov/PhysRefData

  27. V. M. Klechkovsky, Atomic Electrons Distribution and the Formulation of Rules for the Filling of Electron Levels (Atomizdat, Moscow, 1968) (in Russian).

    Google Scholar 

  28. Yu. N. Demkov and V. N. Ostrovsky, Zh. Eksp. Teor. Fiz. 60, 2011 (1971); 62, 125 (1972) [ [Sov. Phys. JETP 33, 1083 (1971); 35, 66 (1972)].

    Google Scholar 

  29. Yu. Kitagawara and A. O. Barut, J. Phys. B 16, 3305 (1983); 17, 4251 (1984).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zorin, A.V., Sevastianov, L.A. Hydrogen-like atom with nonnegative quantum distribution function. Phys. Atom. Nuclei 70, 792–799 (2007). https://doi.org/10.1134/S1063778807040229

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778807040229

PACS numbers

Navigation