Skip to main content
Log in

Higgs boson production on protons within the QCD semihard approach

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Higgs boson (H) production in proton-proton collisions via the mechanism of gluon-gluon fusion is considered within the QCD semihard (k T-factorization) approach. Results are presented that were obtained by calculating the total and differential cross sections for inclusive Higgs boson production in \(p\bar p \to H + X\) processes at the Tevatron collider and LHC energies. It is shown that, even in the leading order, the QCD semihard approach makes it possible to study processes involving the associated production of Higgs bosons and one or two hadron jets. Various azimuthal correlations arising in such processes between the transverse momenta of final particles are analyzed. The dependence of all calculated quantities on the choice of unintegrated gluon distribution in the proton is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Wilczek, Phys. Rev. Lett. B 39, 1304 (1977); H. M. Georgi, S. L. Glashow, M. E. Machacek, and D. V. Nanopoulos, Phys. Rev. Lett. 40, 692 (1978); J. R. Ellis, M. K. Gaillard, D. V. Nanopoulos, and C. T. Sachrajda, Phys. Lett. B 83, 339 (1979); T. G. Rizzo, Phys. Rev. D 22, 178, 1824 (1980).

    Article  ADS  Google Scholar 

  2. D. Graudenz, M. Spira, and P. M. Zervas, Phys. Rev. Lett. 70, 1372 (1993); M. Spira, A. Djouadi, D. Graudenz, and P. M. Zervas, Nucl. Phys. B 453, 17 (1995).

    Article  ADS  Google Scholar 

  3. N. Kauer, T. Plehn, D. Rainwater, and D. Zeppenfeld, Phys. Lett. B 503, 113 (2001); T. Plehn, D. Rainwater, and D. Zeppenfeld, Phys. Rev. D 61, 093005 (2000); D. Rainwater and D. Zeppenfeld, J. High Energy Phys. 9712, 005 (1997).

    Article  ADS  Google Scholar 

  4. V. N. Gribov and L. N. Lipatov, Yad. Fiz. 15, 781 (1972) [Sov. J. Nucl. Phys. 15, 438 (1972)]; L. N. Lipatov, Yad. Fiz. 20, 181 (1974) [Sov. J. Nucl. Phys. 20, 94 (1974)]; G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977); Yu. L. Dokshitser, Zh. Éksp. Teor. Fiz. 73, 1216 (1977) [Sov. Phys. JETP 46, 641 (1977)].

    Google Scholar 

  5. V. N. Gribov, E. M. Levin, and M. G. Ryskin, Phys. Rep. 100, 1 (1983).

    Article  ADS  Google Scholar 

  6. E. M. Levin, M. G. Ryskin, Yu. M. Shabel’skiĭ, and A. G. Shuvaev, Yad. Fiz. 53, 1059 (1991) [Sov. J. Nucl. Phys. 53, 657 (1991)].

    Google Scholar 

  7. S. Catani, M. Ciafoloni, and F. Hautmann, Nucl. Phys. B 366, 135 (1991).

    Article  ADS  Google Scholar 

  8. J. C. Collins and R. K. Ellis, Nucl. Phys. B 360, 3 (1991).

    Article  ADS  Google Scholar 

  9. É. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Zh. Éksp. Teor. Fiz. 71, 840 (1976); 72, 377 (1977) [Sov. Phys. JETP 44, 443 (1976); 45, 199 (1977)]; Yu. Yu. Balitskiĭ and L. N. Lipatov, Yad. Fiz. 28, 1597 (1978) [Phys. At. Nucl. 28, 822 (1978)].

    Google Scholar 

  10. M. Ciafaloni, Nucl. Phys. B 296, 49 (1988); S. Catani, F. Fiorani, and G. Marchesini, Phys. Lett. B 234, 339 (1990); Nucl. Phys. B 336, 18 (1990); G. Marchesini, Nucl. Phys. B 445, 49 (1995).

    Article  ADS  Google Scholar 

  11. J. R. Forshaw and A. Sabio Vera, Phys. Lett. B 440, 141 (1998).

    Article  ADS  Google Scholar 

  12. B. R. Webber, Phys. Lett. B 444, 81 (1998).

    Article  ADS  Google Scholar 

  13. G. P. Salam, J. High Energy Phys. 03, 009 (1999).

    Article  ADS  Google Scholar 

  14. Small-x Collab. (B. Andersson et al.), Eur. Phys. J. C 25, 77 (2002).

    ADS  Google Scholar 

  15. Small-x Collab. (J. Andersen et al.), Eur. Phys. J. C 35, 67 (2004).

    Article  ADS  Google Scholar 

  16. H. Jung, Mod. Phys. Lett. A 19, 1 (2004).

    Article  ADS  Google Scholar 

  17. M. A. Kimber, A. D. Martin, and M. G. Ryskin, Phys. Rev. D 63, 114027 (2001).

    Google Scholar 

  18. M. A. Kimber, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C 12, 655 (2000).

    Article  ADS  Google Scholar 

  19. A. V. Lipatov and N. P. Zotov, Eur. Phys. J. C 41, 163 (2005).

    Article  ADS  Google Scholar 

  20. V. Del Duca, W. Kilgore, C. Olear, et al., Nucl. Phys. B 616, 367 (2001); Phys. Rev. D 67, 073003 (2003).

    Article  ADS  Google Scholar 

  21. V. Del Duca, hep-ph/0312184.

  22. J. R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B 106, 292 (1976); A. I. Vaĭnshteĭn, M. B. Voloshin, V. I. Zakharov, and M. A. Shifman, Yad. Fiz. 30, 1368 (1979) [Sov. J. Nucl. Phys. 30, 711 (1979)].

    ADS  Google Scholar 

  23. R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002); C. Anastasiou and K. Melnikov, Nucl. Phys. B 646, 220 (2002); V. Ravindran, J. Smith, and W. L. van Neerven, Nucl. Phys. B 665, 325 (2003).

    Google Scholar 

  24. S. Dawson, Nucl. Phys. B 359, 283 (1991); A. Djouadi, M. Spira, and P. M. Zervas, Phys. Lett. B 264, 440 (1991).

    Article  ADS  Google Scholar 

  25. J. C. Collins and D. E. Soper, Nucl. Phys. B 193, 381 (1981); 213, 545 (1983); 197, 446 (1982).

    Article  ADS  Google Scholar 

  26. J. C. Collins, D. E. Soper, and G. Sterman, Nucl. Phys. B 250, 199 (1985).

    Article  ADS  Google Scholar 

  27. R. K. Ellis and S. Veseli, Nucl. Phys. B 511, 649 (1998); R. K. Ellis, D. A. Ross, and S. Veseli, Nucl. Phys. B 503, 309 (1997).

    Article  ADS  Google Scholar 

  28. S. Catani, E. D’Emilio, and L. Trentadue, Phys. Lett. B 211, 335 (1988); R. P. Kauffmann, Phys. Rev. D 45, 1512 (1992).

    Article  ADS  Google Scholar 

  29. D. de Florian and M. Grazzini, Phys. Rev. Lett. 85, 4678 (2000); Nucl. Phys. B 616, 247 (2001).

    Article  ADS  Google Scholar 

  30. A. Gawron and J. Kwiecinski, Phys. Rev. D 70, 014003 (2004).

    Google Scholar 

  31. G. Watt, A. D. Martin, and M. G. Ryskin, Phys. Rev. D 70, 014012, 079902(E) (2004).

    Google Scholar 

  32. A. V. Lipatov and N. P. Zotov, Eur. Phys. J. C 44, 559 (2005).

    Article  ADS  Google Scholar 

  33. H. Jung, Comput. Phys. Commun. 143, 100 (2002).

    Article  MATH  ADS  Google Scholar 

  34. F. Hautmann, Phys. Lett. B 535, 159 (2002).

    Article  ADS  Google Scholar 

  35. G. P. Lepage, J. Comput. Phys. 27, 192 (1978).

    Article  MATH  Google Scholar 

  36. M. Glück, E. Reya, and A. Vogt, Phys. Rev. D 46, 1973 (1992); Z. Phys. C 67, 433 (1995).

    Article  ADS  Google Scholar 

  37. S. P. Baranov, N. P. Zotov, and A. V. Lipatov, Yad. Fiz. 67, 859 (2004) [Phys. At. Nucl. 67, 837 (2004)].

    Google Scholar 

  38. S. P. Baranov and N. P. Zotov, Phys. Lett. B 491, 111 (2000).

    Article  ADS  Google Scholar 

  39. S. P. Baranov and M. Smizanska, Phys. Rev. D 62, 014012 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.P. Zotov, A.V. Lipatov, 2007, published in Yadernaya Fizika, 2007, Vol. 70, No. 2, pp. 422–437.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zotov, N.P., Lipatov, A.V. Higgs boson production on protons within the QCD semihard approach. Phys. Atom. Nuclei 70, 394–408 (2007). https://doi.org/10.1134/S1063778807020202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778807020202

PACS numbers

Navigation