Skip to main content
Log in

Nucleus-nucleus potential within the semimicroscopic dispersive model on the basis of a corrected folding-model potential

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A procedure is proposed for correcting the energy dependence of the mean-field component of the optical-model potential, this component being calculated within the double-folding model with allowance for exchange effects in the approximation of one-nucleon knockout exchange. The procedure is based on employing, for the mean field, an empirical energy dependence that is obtained from a dispersion analysis of integrated features of phenomenological optical-model potentials and is tested by applying it to calculating the mean field and to analyzing data on the elastic scattering of alpha particles on oxygen nuclei within the semimicroscopic dispersive optical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Satchler, Direct Nuclear Reactions (Clarendon, Oxford, 1983).

    Google Scholar 

  2. C. Mahaux, H. Ngo, and G. R. Satchler, Nucl. Phys. A 449, 354 (1986).

    Article  ADS  Google Scholar 

  3. D. A. Goldberg and S. M. Smith, Phys. Rev. Lett. 29, 500 (1972).

    Article  ADS  Google Scholar 

  4. M. E. Brandan and K. W. McVoy, Phys. Rev. C 43, 1140 (1991).

    Article  ADS  Google Scholar 

  5. A. A. Ogloblin, S. A. Goncharov, Yu. A. Glukhov, et al., Yad. Fiz. 66, 1523 (2003) [Phys. At. Nucl. 66, 1478 (2003)].

    Google Scholar 

  6. S. A. Goncharov, Yu. A. Glukhov, A. S. Dem’yanova, et al., Izv. Akad. Nauk, Ser. Fiz. 67, 72 (2003).

    Google Scholar 

  7. A. S. Dem’yanova, Yu. A. Glukhov, W. H. Trzaska, et al., Izv. Akad. Nauk, Ser. Fiz. 67, 80 (2003).

    Google Scholar 

  8. D. T. Khoa, W. von Oertzen, and H. G. Bohlen, Phys. Rev. C 49, 1652 (1994).

    Article  ADS  Google Scholar 

  9. D. T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C 51, 2069 (1995).

    Article  ADS  Google Scholar 

  10. D. T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C 56, 954 (1997).

    Article  ADS  Google Scholar 

  11. D. T. Khoa and G. R. Satchler, Nucl. Phys. A 668, 3 (2000).

    Article  ADS  Google Scholar 

  12. D. T. Khoa, W. von Oertzen, H. G. Bohlen, and F. Nuoffer, Nucl. Phys. A 672, 387 (2000).

    Article  ADS  Google Scholar 

  13. G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).

    Article  ADS  Google Scholar 

  14. S. A. Goncharov, O. M. Knyaz’kov, and A. A. Kolozhvari, Yad. Fiz. 59, 666 (1996) [Phys. At. Nucl. 59, 634 (1996)].

    Google Scholar 

  15. M. Ermer, H. Clement, P. Grabmayr, et al., Phys. Lett. B 188, 17 (1987).

    Article  ADS  Google Scholar 

  16. A. M. Kobos, M. E. Brandan, and G. R. Satchler, Nucl. Phys. A 487, 457 (1988).

    Article  ADS  Google Scholar 

  17. S. A. Goncharov, A. S. Dem’yanova, and A. A. Ogloblin, in Proceeding of the International Conference on Exotic Nuclei and Atomic Masses “ENAM’98”, Bellaire, Michigan, 1998, Ed. by B. M. Sherrill, D. J. Morrissey, and C. N. Davids (AIP, Woodbury, New York, 1998), p. 510.

    Google Scholar 

  18. G. Bertsch, J. Borysowics, H. McManus, and W. G. Love, Nucl. Phys. A 284, 399 (1977).

    Article  ADS  Google Scholar 

  19. N. Anantaraman, H. Toki, and G. Bertsch, Nucl. Phys. A 398, 269 (1983).

    Article  ADS  Google Scholar 

  20. G. Ciangaru, Nucl. Phys. A 398, 343 (1983).

    Article  ADS  Google Scholar 

  21. T. Wada and H. Horiuchi, Prog. Theor. Phys. 80, 488 (1988).

    Article  ADS  Google Scholar 

  22. T. Wada and H. Horiuchi, Prog. Theor. Phys. 80, 502(1988).

    Article  ADS  Google Scholar 

  23. V. B. Soubbotin, W. von Oertzen, X. Vinas, et al., Phys. Rev. C 64, 014601 (2001).

  24. F. Michel, J. Albinski, P. Belery, et al., Phys. Rev. C 28, 1904 (1983).

    Article  ADS  Google Scholar 

  25. H. Abele and G. Staudt, Phys. Rev. C 47, 742 (1993).

    Article  ADS  Google Scholar 

  26. M. Ismail, F. Salah, and M. M. Osman, Phys. Rev. C 54, 3308 (1996).

    Article  ADS  Google Scholar 

  27. M. Ismail, M. M. Osman, and F. Salah, Phys. Rev. C 60, 037603 (1999).

    Google Scholar 

  28. V. B. Soubbotin and X. Vinas, Nucl. Phys. A 665, 291 (2000).

    Article  Google Scholar 

  29. C. W. De Jager, H. De Vries, and C. De Vries, At. Data Nucl. Data Tables 14, 479 (1974).

    Article  ADS  Google Scholar 

  30. J. H. Sorensen and A. Winther, Nucl. Phys. A 550, 329 (1992).

    Article  ADS  Google Scholar 

  31. W. von Oertzen and H. G. Bohlen, Phys. Rep. 19C, 1 (1975).

    Article  ADS  Google Scholar 

  32. A. Ingemarsson, J. Nyberg, P. U. Renberg, et al., Nucl. Phys. A 676, 3 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Goncharov, A. Izadpanah, 2007, published in Yadernaya Fizika, 2007, Vol. 70, No. 1, pp. 21–31.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharov, S.A., Izadpanah, A. Nucleus-nucleus potential within the semimicroscopic dispersive model on the basis of a corrected folding-model potential. Phys. Atom. Nuclei 70, 18–28 (2007). https://doi.org/10.1134/S1063778807010036

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778807010036

PACS numbers

Navigation