Skip to main content

Study of Coulomb interaction for two diffuse spherical-deformed nuclei

Abstract

The Coulomb interaction for a spherical—deformed interacting pair is derived assuming realistic nuclear charge distributions. The effect of a finite diffuseness parameter is described either by the folding product of spherical or deformed sharp-surface distribution and a spherical short-range function or by using a Fermi two-parameter distribution function. The approximate solutions obtained using these categories of charge distributions are then compared to the numerical solution obtained within the framework of the double-folding model. We found that the finite surface diffuseness parameter affects slightly the inner region of the total Coulomb potential, while it produces large errors in calculating the Coulomb form factors used frequently in nuclear reactions and fusion numerical codes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).

    Article  ADS  Google Scholar 

  2. 2.

    I. Bromley and D. Allan, Treatise on Heavy-Ion Science (Plenum, New York, 1984), Vol. 1.

    Google Scholar 

  3. 3.

    G. R. Satchler, Direct Nuclear Reaction (Oxford Univ. Press, Oxford, 1983).

    Google Scholar 

  4. 4.

    G. Palla, H. V. Geramb, and C. Pegal, Nucl. Phys. A 403, 134 (1983).

    Article  ADS  Google Scholar 

  5. 5.

    B. Sinha, Phys. Rev. C 11, 1546 (1975).

    Article  ADS  Google Scholar 

  6. 6.

    M. Rashdan, A. Faessler, N. Ohtsuka, et al., Z. Phys. A 330, 417 (1988).

    Google Scholar 

  7. 7.

    Dao T. Khoa, G. R. Satchler, and W. von Oertzen, Phys. Rev. C 56, 954 (1997).

    Article  ADS  Google Scholar 

  8. 8.

    P. Möller and A. Iwamoto, Phys. Rev. C 61, 047602 (2000).

  9. 9.

    A. B. Balantekin and N. Takigawa, Rev. Mod. Phys. 70, 77 (1998).

    Article  ADS  Google Scholar 

  10. 10.

    K. Hagiono, N. Takigawa, M. Dasgupta, et al., Phys. Rev. C 55, 276 (1997).

    Article  ADS  Google Scholar 

  11. 11.

    K. Siwek-Wilczyńska and J. Wilczyński, Phys. Rev. C 64, 024611 (2001).

    Google Scholar 

  12. 12.

    G. Giardina et al., Nucl. Phys. A 671, 165 (2000).

    Article  ADS  Google Scholar 

  13. 13.

    M. Ismail, W. M. Seif, and H. El-Gebaly, Phys. Lett. B 563, 53 (2003).

    Article  ADS  Google Scholar 

  14. 14.

    K. Hagino and N. Rowley, nucl-th/0411055.

  15. 15.

    G. Pollarolo and A. Winther, Phys. Rev. C 62, 054611 (2000).

    Google Scholar 

  16. 16.

    N. Takigawa, T. Rumin, and N. Ihara, Phys. Rev. C 61, 044607 (2000).

    Google Scholar 

  17. 17.

    H. Iwe, Z. Phys. A 304, 347 (1982).

    Article  Google Scholar 

  18. 18.

    M. Gyulassy and S. K. Kauffmann, Nucl. Phys. A 362, 503 (1981).

    Article  ADS  Google Scholar 

  19. 19.

    V. S Uma Maheswari, C. Fuchs, A. Faessler, et al., Nucl. Phys. A 628, 669 (1998).

    Article  ADS  Google Scholar 

  20. 20.

    H. Iwe and H. J. Wiebicke, Preprint No. E4-11967, JINR (Joint Institute for Nuclear Research, Dubna, 1978).

  21. 21.

    M. W. Kermode, M. M. Mustafa, and N. Rowley, J. Phys. G 16, L299 (1990).

    Article  ADS  Google Scholar 

  22. 22.

    D. Franey, Minnesota Report No. 154 (1973).

  23. 23.

    A. K. Jain, M. C. Gupta, and C. S. Shastry, Phys. Rev. C 12, 801 (1975).

    Article  ADS  Google Scholar 

  24. 24.

    P. Fröbrich and R. Lipperheide, Theory of Nuclear Physics (Oxford Sci. Publ., Oxford, 1996).

    Google Scholar 

  25. 25.

    H. J. Krappe, Ann. Phys. (N.Y.) 99, 142 (1976).

    Article  ADS  Google Scholar 

  26. 26.

    F. Dickmann, Z. Phys. 203, 141 (1967).

    Article  Google Scholar 

  27. 27.

    L. W. Owen and G. R. Satchler, Nucl. Phys. 51, 155 (1964).

    Article  Google Scholar 

  28. 28.

    Qingfeng Li et al., Eur. Phys. J. A 24, 223 (2005).

    Article  ADS  Google Scholar 

  29. 29.

    M. J. Rhoades-Brown, V. E. Oberacker, M. Seiwert, and W. Greiner, Z. Phys. A 310, 287 (1983).

    Article  Google Scholar 

  30. 30.

    M. Ismail, M. Rashdan, A. Faessler, et al., Z. Phys. A 323, 339 (1986).

    Google Scholar 

  31. 31.

    L. C. Chamon et al., Phys. Rev. C 70, 014604 (2004).

  32. 32.

    R. K. Gupta, M. Balasubramaniam, R. Kumar, et al., J. Phys. G 31, 631 (2005).

    Article  ADS  Google Scholar 

  33. 33.

    T. Rumin, K. Hagino, and N. Takigawa, Phys. Rev. C 61, 014605 (2000).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

The text was submitted by the authors in English

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ismail, M., Seif, W.M., Abou-Shady, H. et al. Study of Coulomb interaction for two diffuse spherical-deformed nuclei. Phys. Atom. Nuclei 69, 1463–1471 (2006). https://doi.org/10.1134/S1063778806090055

Download citation

PACS numbers

  • 24.10.Eq
  • 25.70.Bc