Skip to main content
Log in

Magnetostatic Mechanism of Chiral Symmetry Breaking in Multilayer Magnetic Structures

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that the energy of a ferromagnetic film deposited onto a paramagnetic or superconducting substrate acquires a contribution in the form of the Dzyaloshinskii–Moriya interaction. This contribution appears as a result of the magnetostatic interaction of the magnetization of the ferromagnetic film with the magnetization induced by it in a paramagnet or by the supercurrent in the superconductor and leads to the removal of the chiral degeneracy, nonreciprocity of spin waves, and the formation of chiral states such as magnetic skyrmions. Our estimates indicate the possibility of experimental observation of predicted effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. The term being omitted is on the order of qh and, hence, cannot be ignored. However, we will henceforth show that the disregard of this term does not lead to significant errors.

REFERENCES

  1. I. E. Dzialoshinskii, Sov. Phys. JETP 5, 1259 (1957).

    Google Scholar 

  2. T. Moriya, Phys. Rev. 120, 91 (1960).

    Article  ADS  Google Scholar 

  3. S. Mühlbauer, B. Binz, F. Jonietz, et al., Science (Washington, DC, U. S.) 323, 915 (2009).

    Article  ADS  Google Scholar 

  4. N. Romming, C. Hanneken, M. Menzel, et al., Science (Washington, DC, U. S.) 341, 636 (2013).

    Article  ADS  Google Scholar 

  5. J.-H. Moon, S.-M. Seo, K.-J. Lee, et al., Phys. Rev. B 88, 184404 (2013).

  6. K. Di, V. L. Zhang, H. S. Lim, et al., Appl. Phys. Lett. 106, 052403 (2015).

  7. Y. Ishikawa, K. Tajima, D. Bloch, et al., Solid State Commun. 19, 525 (1976).

    Article  ADS  Google Scholar 

  8. A. Crépieux and C. Lacroix, J. Magn. Magn. Mater. 182, 341 (1998).

    Article  ADS  Google Scholar 

  9. H. Yang, A. Thiaville, S. Rohart, et al., Phys. Rev. Lett. 115, 267210 (2015).

  10. H. Imamura, P. Bruno, and Y. Utsumi, Phys. Rev. B 69, 121303 (2004).

  11. S.-X. Wang, H.-R. Chang, and J. Zhou, Phys. Rev. B 96, 115204 (2017).

  12. N. Mikuszeit, S. Meckler, R. Wiesendanger, et al., Phys. Rev. B 84, 054404 (2011).

  13. K. R. Mukhamatchin and A. A. Fraerman, JETP Lett. 93, 716 (2011).

    Article  ADS  Google Scholar 

  14. I. M. Nefedov, A. A. Fraerman, and I. A. Shereshevskii, Phys. Solid State 58, 503 (2016).

    Article  ADS  Google Scholar 

  15. K. R. Mukhamatchin and A. A. Fraerman, J. Exp. Theor. Phys. 131, 963 (2020).

    Article  ADS  Google Scholar 

  16. M. A. Kuznetsov and A. A. Fraerman, Phys. Rev. B 105, 214401 (2022).

  17. M. A. Kuznetsov, K. R. Mukhamatchin, and A. A. Fraerman, Phys. Rev. B 107, 184428 (2023).

  18. R. E. Camley, Surf. Sci. Rep. 7, 103 (1987).

    Article  ADS  Google Scholar 

  19. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC, New York, 1996).

    Google Scholar 

  20. M. Jamali, J. H. Kwon, S.-M. Seo, et al., Sci. Rep. 3, 3160 (2013).

    Article  Google Scholar 

  21. N. Sato, K. Sekiguchi, and Y. Nozaki, Appl. Phys. Express 6, 063001 (2013).

  22. Y. Li, W. Zhang, V. Tyberkevych, et al., J. Appl. Phys. 128, 130902 (2020).

  23. A. Barman, G. Gubbiotti, S. Ladak, et al., J. Phys.: Condens. Matter 33, 413001 (2021).

  24. H. Yu, J. Xiao, and H. Schultheiss, Phys. Rep. 905, 1 (2021).

    Article  ADS  Google Scholar 

  25. R. W. Damon and J. R. Eshbach, J. Phys. Chem. Solids 19, 308 (1961).

    Article  ADS  Google Scholar 

  26. S. R. Seshadri, Proc. IEEE 58, 506 (1970).

    Article  Google Scholar 

  27. R. E. de Wames and T. Wolfram, J. Appl. Phys. 41, 5243 (1970).

    Article  ADS  Google Scholar 

  28. M. Mruczkiewicz and M. Krawczyk, J. Appl. Phys. 115, 113909 (2014).

  29. R. L. Melcher, Phys. Rev. Lett. 30, 125 (1973).

    Article  ADS  Google Scholar 

  30. L. Udvardi and L. Szunyogh, Phys. Rev. Lett. 102, 207204 (2009).

  31. K. Zakeri, Y. Zhang, J. Prokop, et al., Phys. Rev. Lett. 104, 137203 (2010).

  32. J.-H. Moon, S.-M. Seo, K.-J. Lee, et al., Phys. Rev. B 88, 184404 (2013).

  33. F. Garcia-Sanchez, P. Borys, J.-V. Kim, et al., Phys. Rev. B 89, 224408 (2014).

  34. A. A. Stashkevich, M. Belmeguenai, Y. Roussigné, et al., Phys. Rev. B 91, 214409 (2015).

  35. M. Belmeguenai, J.-P. Adam, Y. Roussigné, et al., Phys. Rev. B 91, 180405(R) (2015).

  36. V. L. Zhang, K. Di, H. S. Lim, et al., Appl. Phys. Lett. 107, 022402 (2015).

  37. J. M. Lee, C. Jang, B.-C. Min, et al., Nano Lett. 16, 62 (2016).

    Article  ADS  Google Scholar 

  38. T. Brächer, O. Boulle, and G. Gaudin, Phys. Rev. B 95, 064429 (2017).

  39. K. Szulc, P. Graczyk, M. Mruczkiewicz, et al., Phys. Rev. Appl. 14, 034063 (2020).

  40. F. J. dos Santos, M. dos Santos Dias, and S. Lounis, Phys. Rev. B 102, 104401 (2020).

  41. H. Wang, J. Chen, T. Liu, et al., Phys. Rev. Lett. 124, 027203 (2020).

  42. A. F. Franco and P. Landeros, Phys. Rev. B 102, 184424 (2020).

  43. I. A. Golovchanskiy, N. N. Abramov, V. S. Stolyarov, et al., J. Appl. Phys. 124, 233903 (2018).

  44. I. A. Golovchanskiy, N. N. Abramov, and V. S. Stolyarov, J. Appl. Phys. 127, 093903 (2020).

  45. R. E. Camley and A. A. Maradudin, Solid State Commun. 41, 585 (1982).

    Article  ADS  Google Scholar 

  46. P. X. Zhang and W. Zinn, Phys. Rev. B 35, 5219 (1987).

    Article  ADS  Google Scholar 

  47. J. Barnaś and P. Grünberg, J. Magn. Magn. Mater. 82, 186 (1989).

    Article  ADS  Google Scholar 

  48. F. C. Nörtemann, R. L. Stamps, and R. E. Camley, Phys. Rev. B 47, 11910 (1993).

    Article  ADS  Google Scholar 

  49. A. V. Vashkovskii and E. G. Lokk, J. Commun. Technol. Electron. 51, 568 (2006).

    Article  Google Scholar 

  50. R. A. Gallardo, T. Schneider, A. K. Chaurasiya, et al., Phys. Rev. Appl. 12, 034012 (2019).

  51. M. Ishibashi, Y. Shiota, T. Li, et al., Sci. Adv. 6, eaaz6931 (2020).

  52. W. Song, X. Wang, W. Wang, et al., Phys. Status Solidi RRL 14, 2000118 (2020).

  53. M. Grassi, M. Geilen, D. Louis, et al., Phys. Rev. Appl. 14, 024047 (2020).

  54. J. Han, Y. Fan, B. C. McGoldrick, et al., Nano Lett. 21, 7037 (2021).

    Article  ADS  Google Scholar 

  55. S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).

  56. A. N. Bogdanov and D. A. Yablonskii, Sov. Phys. JETP 68, 101 (1989).

    ADS  Google Scholar 

  57. A. Bogdanov and A. Hubert, Phys. Status Solidi B 186, 527 (1994).

    Article  ADS  Google Scholar 

  58. A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994).

    Article  ADS  Google Scholar 

  59. S. Y. Dan’kov, A. M. Tishin, V. K. Pecharsky, et al., Phys. Rev. B 57, 3478 (1998).

    Article  ADS  Google Scholar 

  60. M. Baćani, M. A. Marioni, J. Schwenk, et al., Sci. Rep. 9, 3114 (2019).

    Article  ADS  Google Scholar 

  61. A. Samardak, A. Kolesnikov, and M. Stebliy, Appl. Phys. Lett. 112, 192406 (2018).

  62. A. G. Temiryazev, M. P. Temiryazeva, A. V. Zdoroveyshchev, et al., Phys. Solid State 60, 2200 (2018).

    Article  ADS  Google Scholar 

  63. L.-C. Peng, Y. Zhang, S.-L. Zuo, et al., Chin. Phys. B 27, 066802 (2018).

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.V. Sapozhnikov, A.S. Mel’nikov, N. I. Polushkin, and I.S. Burmistrov for fruitful discussions.

Funding

This study was supported by the Russian Science Foundation (project no. 21-72-10176)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Kuznetsov or A. A. Fraerman.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

This article is prepared for the memorial issue of the journal dedicated to the 95th birthday of L.A. Prozorova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, M.A., Fraerman, A.A. Magnetostatic Mechanism of Chiral Symmetry Breaking in Multilayer Magnetic Structures. J. Exp. Theor. Phys. 137, 442–452 (2023). https://doi.org/10.1134/S1063776123100187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123100187

Navigation