Skip to main content
Log in

Antiferromagnetic Excitonic Insulator

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effective the two-band Hamiltonian is obtained for iridium oxides with account for strong electron correlations (SEC) and the spin–orbit interaction. The intraatomic electron correlations in iridium ions induce the formation of Hubbard fermions (HF) filling the states in the valence band. Another consequence of SEC is associated with the emergence of the antiferromagnetic (AFM) exchange interaction between HF in accordance with the Anderson mechanism. As a result, a long-range antiferromagnetic order is established in the system, and in the conditions of band overlapping, the intersite Coulomb interaction induces a phase transition to the excitonic insulator (EI) state with a long-range AFM order. The system of integral self-consistent equations, the solution to which determines the excitonic order parameter components Δi,j(k), sublattice magnetization M, Hubbard fermion concentration nd, and chemical potential μ, is obtained using the atomic representation, the method of two-time temperature Green’s functions, and the Zwanzig–Mori projection technique. The symmetry classification of AFM EI phases is performed, and it is shown that in the nearest neighbor approximation, state Δi, j(k) with the s-type symmetry corresponds to the ground state, while the phases with the d- and p-symmetries are metastable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. A. S. Borovik-Romanov, in Antiferromagnetism and Ferrites (Akad. Nauk SSSR, Moscow, 1962), p. 5 [in Russian].

    Google Scholar 

  2. A. V. Chubukov, S. Sachdev, and J. Ye, Phys. Rev. B 49, 11919 (1994).

    Article  ADS  Google Scholar 

  3. D. H. Lee, J. D. Joannopoulos, J. W. Negele, et al., Phys. Rev. Lett. 433A, 52 (1984).

    Google Scholar 

  4. H. Kawamura, S. Miyashita, J. W. Negele, et al., Phys. Rev. Lett. 54, 453952 (1985).

  5. A. V. Chubukov and D. I. Golosov, J. Phys.: Condens. Matter 3, 69 (1991).

    ADS  Google Scholar 

  6. A. I. Smirnov, Phys. Usp. 59, 564 (2016).

    Article  ADS  Google Scholar 

  7. L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, A. Ya. Shapiro, and L. N. Dem’yanets, JETP Lett. 80, 204 (2004).

    Article  ADS  Google Scholar 

  8. L. E. Svistov, L. A. Prozorova, A. M. Farutin, A. A. Gippius, K. S. Okhotnikov, A. A. Bush, K. E. Kamentsev, and E. A. Tishchenko, J. Exp. Theor. Phys. 108, 1000 (2009).

    Article  ADS  Google Scholar 

  9. L. V. Keldysh and Yu. V. Kopaev, Sov. Phys. Solid State 6, 2219 (1964).

    Google Scholar 

  10. A. N. Kozlov and L. A. Maksimov, Sov. Phys. JETP 21, 790 (1965).

    ADS  Google Scholar 

  11. J. de Cloiseaux, J. Phys. Chem. Solids 26, 259 (1965).

    Article  ADS  Google Scholar 

  12. Y. Lu, H. Kono, T. Larkin, A. Rost, T. Takayama, A. Boris, B. Keimer, and H. Takagi, Nat. Commun. 8, 14408 (2017).

    Article  ADS  Google Scholar 

  13. N. I. Kulikov and V. V. Tugushev, Sov. Phys. Usp. 27, 954 (1984).

    Article  ADS  Google Scholar 

  14. D. G. Mazzone, Y. Shen, H. Suwn, et al., Nat. Commun. 26, 259 (2022).

    Google Scholar 

  15. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  16. X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  17. L. Balents, Nature (London, U.K.) 464, 199 (2010).

    Article  ADS  Google Scholar 

  18. V. V. Val’kov, JETP Lett. 111, 647 (2020).

    Article  ADS  Google Scholar 

  19. B. J. Kim, Hosub Jin, S. J. Moon, et al., Phys. Rev. Lett. 101, 076402 (2008).

  20. J.-M. Carter, V. Vijay Shankar, and Hae-Young Kee, Phys. Rev. B 86, 035111 (2013).

  21. R. Schaffer, E. Kin-Ho Lee, B.-J. Yang, et al., Rep. Prog. Phys. 79, 094594 (2016).

  22. S. Bhowal and I. Dasgupta, J. Phys.: Condens. Matter 33, 453001 (2021).

  23. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).

    Article  ADS  Google Scholar 

  24. J. Hubbard, Proc. R. Soc. A 283, 242 (1963).

    Google Scholar 

  25. Yu. A. Izyumov, Sov. Phys. Usp. 34, 935 (1991).

    Article  ADS  Google Scholar 

  26. Yu. A. Izyumov, Phys. Usp. 38, 385 (1995).

    Article  ADS  Google Scholar 

  27. Yu. A. Izyumov, Phys. Usp. 40, 445 (1997).

    Article  ADS  Google Scholar 

  28. N. N. Bogolyubov, Izv. Akad. Nauk SSSR, Ser. Fiz. 6, 77 (1947).

    Google Scholar 

  29. D. N. Zubarev, Non-Equilibrium Statistical Thermodynamics (Nauka, Moscow, 1971; Mir, Moscow, 1973).

  30. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Nauka, Moscow, 1965; Plenum, New York, 1967).

  31. J. Hubbard, Proc. R. Soc. A 285, 542 (1965).

    ADS  Google Scholar 

  32. F. Dyson, Phys. Rev. 102, 1217 (1956);

    Article  ADS  MathSciNet  Google Scholar 

  33. Phys. Rev. 102, 1230 (1956).

  34. R. O. Zaitsev, Sov. Phys. JETP 41, 100 (1975).

    ADS  Google Scholar 

  35. R. O. Zaitsev, Sov. Phys. JETP 43, 574 (1976).

    ADS  Google Scholar 

  36. R. Zwanzig, Phys. Rev. 124, 983 (1961).

    Article  ADS  Google Scholar 

  37. H. Mori, Prog. Theor. Phys. 33, 423 (1965).

    Article  ADS  Google Scholar 

  38. M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, et al., Nature (London, U.K.) 576, 416 (2019); arXiv: 1809.07389 (2018).

  39. D. Zhang, M. Shi, T. Zhu, et al., Phys. Rev. Lett. 122, 206401 (2019).

  40. Y. Gong, J. Guo, J. Li, et al., Chin. Phys. Lett. 36, 076801 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Val’kov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

This article is prepared for the memorial issue of the journal dedicated to the 95th birthday of L.A. Prozorova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Val’kov, V.V. Antiferromagnetic Excitonic Insulator. J. Exp. Theor. Phys. 137, 474–485 (2023). https://doi.org/10.1134/S1063776123100138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123100138

Navigation