Skip to main content
Log in

Spin Transfer Torque and Nonlinear Quantum Electron Transport in Chiral Helimagnets

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We construct a nonlinear theory of electric resistance of chiral helimagnets, in which the shape changes and the magnetization spiral starts rotating during the passage of electric current due to the spin transfer torque effect. It is shown that the rotation of the spin spiral under the action of the passing current, the electric resistance of the helimagnet is always lower than the resistance of a helimagnet in which the spin spiral is stationary. It is found that the current–voltage characteristic of the helimagnet in the presence of the spin transfer torque from the conduction electron system to the system of localized electrons can be essentially nonlinear. The possibility of the spin electric bistability effect in helimagnets is predicted for the situation when the spin contribution to electric resistance of a helimagnet can take two different values for the same value of the current passing through it. The possibility of realization of states with a negative differential resistance in helimagnets is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. W. Gerlach and O. Stern, Z. Phys. 9, 349 (1922).

    Article  ADS  Google Scholar 

  2. Yu. A. Izyumov, Sov. Phys. Usp. 27, 845 (1984).

    Article  ADS  Google Scholar 

  3. T. Kimura, Ann. Rev. Condens. Matter Phys. 3, 93 (2012).

    Article  Google Scholar 

  4. Y. Togawa, Y. Kousaka, K. Inoue, and J.-i. Kishine, J. Phys. Soc. Jpn. 85, 112001 (2016).

  5. V. V. Ustinov and I. A. Yasyulevich, Phys. Met. Metallogr. 121, 223 (2020).

    Article  ADS  Google Scholar 

  6. V. V. Ustinov and I. A. Yasyulevich, Phys. Rev. B 102, 134431 (2020).

  7. D. W. Boys and S. Legvold, Phys. Rev. 174, 377 (1968).

    Article  ADS  Google Scholar 

  8. T. Yokouchi, N. Kanazawa, A. Kikkawa, D. Morikawa, K. Shibata, T. Arima, Y. Taguchi, F. Kagawa, and Y. Tokura, Nat. Commun. 8, 866 (2017).

    Article  ADS  Google Scholar 

  9. R. Aoki, Y. Kousaka, and Y. Togawa, Phys. Rev. Lett. 122, 057206 (2019).

  10. N. Jiang, Y. Nii, H. Arisawa, E. Saitoh, and Y. Onose, Nat. Commun. 11, 1601 (2020).

    Article  Google Scholar 

  11. N. Jiang, Y. Nii, H. Arisawa, E. Saitoh, J. Ohe, and Y. Onose, Phys. Rev. Lett. 126, 177205 (2021).

  12. L. I. Naumova, M. A. Milyaev, R. S. Zavornitsyn, T. P. Krinitsina, V. V. Proglyado, and V. V. Ustinov, Curr. Appl. Phys. 19, 1252 (2019).

    Article  ADS  Google Scholar 

  13. L. I. Naumova, M. A. Milyaev, R. S. Zavornitsyn, T. P. Krinitsina, T. A. Chernyshova, V. V. Proglyado, and V. V. Ustinov, Phys. Met. Metallogr. 120, 429 (2019).

    Article  ADS  Google Scholar 

  14. R. S. Zavornitsyn, L. I. Naumova, M. A. Milyaev, M. V. Makarova, V. V. Proglyado, I. K. Maksimova, and V. V. Ustinov, Curr. Appl. Phys. 20, 1328 (2020).

    Article  ADS  Google Scholar 

  15. R. S. Zavornitsyn, L. I. Naumova, M. A. Milyaev, M. V. Makarova, T. P. Krinitsina, V. V. Proglyado, and V. V. Ustinov, Phys. Met. Metallogr. 121, 624 (2020).

    Article  ADS  Google Scholar 

  16. V. V. Ustinov, M. A. Milyaev, L. I. Naumova, R. S. Zavornitsyn, T. P. Krinitsina, and V. V. Proglyado, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 1278 (2021).

    Article  Google Scholar 

  17. L. I. Naumova, R. S. Zavornitsyn, M. A. Milyaev, M. V. Makarova, V. V. Proglyado, and V. V. Ustinov, IEEE Trans. Nanotechnol. 20, 866 (2021).

    Article  ADS  Google Scholar 

  18. L. I. Naumova, R. S. Zavornitsyn, M. A. Milyaev, M. V. Makarova, V. V. Proglyado, and V. V. Ustinov, Phys. Met. Metallogr. 122, 540 (2021).

    Article  ADS  Google Scholar 

  19. L. I. Naumova, R. S. Zavornitsyn, M. A. Milyaev, M. V. Makarova, V. V. Proglyado, A. S. Rusalina, and V. V. Ustinov, Phys. Met. Metallogr. 123, 945 (2022).

    Article  ADS  Google Scholar 

  20. O. Wessely, B. Skubic, and L. Nordstrom, Phys. Rev. Lett. 96, 256601 (2006).

  21. K. Goto, H. Katsura, and N. Nagaosa, arXiv: 0807.2901.

  22. S. K. Kudtarkar, Phys. Lett. A 374, 366 (2009).

    Article  ADS  Google Scholar 

  23. J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nat. Commun. 4, 1463 (2013).

    Article  ADS  Google Scholar 

  24. K. M. D. Hals and A. Brataas, Phys. Rev. B 87, 174409 (2013).

  25. V. V. Ustinov and I. A. Yasyulevich, Phys. Rev. B 106, 064417 (2022).

  26. J. Masell, X. Yu, N. Kanazawa, Y. Tokura, and N. Nagaosa, Phys. Rev. B 102, 180402(R) (2020).

  27. Y. Takeuchi, Y. Yamane, J. Yoon, R. Itoh, B. Jinnai, S. Kanai, J. Ieda, S. Fukami, and H. Ohno, Nat. Mater. 20, 1364 (2021).

    Article  ADS  Google Scholar 

  28. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974).

  29. J.-i. Kishine and A. S. Ovchinnikov, Solid State Phys. 66, 1 (2015).

    Article  Google Scholar 

  30. A. N. Ser’eznov, L. N. Stepanova, S. A. Garyainov, S. V. Gagin, O. N. Negodenko, N. A. Filinyuk, and F. D. Kasimov, Negatronics (Nauka, Novosibirsk, 1995), p. 315 [in Russian].

    Google Scholar 

  31. N. A. Filinyuk and A. A. Lazarev, AEU Int. J. Electron. Commun. 68, 172 (2014).

    Article  Google Scholar 

  32. S. Budhathoki, A. Sapkota, K. M. Law, S. Ranjit, B. Nepal, B. D. Hoskins, A. S. Thind, A. Y. Borisevich, M. E. Jamer, T. J. Anderson, A. D. Koehler, K. D. Hobart, G. M. Stephen, D. Heiman, T. Mewes, R. Mishra, J. C. Gallagher, and A. J. Hauser, Phys. Rev. B 101, 220405(R) (2020).

  33. M. Tsoi, R. E. Fontana, and S. S. P. Parkin, Appl. Phys. Lett. 83, 2617 (2003).

    Article  ADS  Google Scholar 

  34. A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004).

  35. M. Klaui, P.-O. Jubert, R. Allenspach, A. Bischof, J. A. C. Bland, G. Faini, U. Rudiger, C. A. F. Vaz, L. Vila, and C. Vouille, Phys. Rev. Lett. 95, 026601 (2005).

  36. Y. Togawa, T. Kimura, K. Harada, T. Akashi, T. Matsuda, A. Tonomura, and Y. Otani, Jpn. J. Appl. Phys. 45, L683 (2006).

    Article  ADS  Google Scholar 

  37. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, Y. B. Bazaliy, and S. S. P. Parkin, Phys. Rev. Lett. 98, 037204 (2007).

  38. M. Hayashi, L. Thomas, R. Moriya, C. Rettner, and S. S. P. Parkin, Science (Washington, DC, U. S.) 320, 209 (2008).

    Article  ADS  Google Scholar 

  39. X. Zhang, Y. Zhou, K. M. Song, T.-E. Park, J. Xia, M. Ezawa, X. Liu, W. Zhao, G. Zhao, and S. Woo, J. Phys.: Condens. Matter 32, 143001 (2020).

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 22-22-00220).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Ustinov or I. A. Yasyulevich.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

This article is prepared for the memorial issue of the journal dedicated to the 95th birthday of L.A. Prozorova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustinov, V.V., Yasyulevich, I.A. Spin Transfer Torque and Nonlinear Quantum Electron Transport in Chiral Helimagnets. J. Exp. Theor. Phys. 137, 422–431 (2023). https://doi.org/10.1134/S1063776123100126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123100126

Navigation