Skip to main content
Log in

Propagation of a Laser-Induced Magnetostatic Wave Packet in a Pseudo Spin Valve in the Presence of Spin Pumping

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Spin pumping and angular momentum transfer, i.e., the emission of a spin current by a precessing magnetization and the reverse process of absorption, play an important role in coherent magnetic dynamics processes in multilayered structures. For ferromagnetic layers separated by a nonmagnetic interlayer these effects give rise to a dynamic coupling between the layers that is dissipative in nature and affects the damping of coherent magnetization precession. We have used micromagnetic simulations to analyze the influence of such a dynamic coupling on the propagation of a laser-induced surface magnetostatic wave (MSW) packet in a pseudo spin valve structure consisting of two ferromagnetic metallic layers separated by a nonmagnetic metallic interlayer. We have considered the MSW generation due to laser-induced heating, which leads to dynamic changes in magnetization and magnetic anisotropy, and added the dynamic coupling effect to the equations for our micromagnetic simulations. As a result, we have revealed that under certain conditions such a coupling leads to a decrease in the spatial damping of the wave packet that corresponds to the acoustic MSW mode forming in the structure considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys. 43, 260301 (2010). https://doi.org/10.1088/0022-3727/43/26/260301

  2. S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, A. Slavin, Yu. N. Barabanenkov, S. A. Osokin, A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevsky, Yu. A. Filimonov, Yu. V. Khivintsev, S. L. Vysotsky, V. K. Sakharov, and E. S. Pavlov, Phys. Usp. 58, 1002 (2015).

    Article  ADS  Google Scholar 

  3. A. Barman, G. Gubbiotti, S. Ladak, et al., J. Phys.: Condens. Matter 33, 413001 (2021). https://doi.org/10.1088/1361-648X/abec1a

  4. Ph. Pirro, V. I. Vasyuchka, A. Serga, et al., Nat. Rev. Mater. 6, 1114 (2021). https://doi.org/10.1038/s41578-021-00332-w

    Article  ADS  Google Scholar 

  5. A. V. Chumak, P. Kabos, M. Wu, et al., IEEE Trans. Magn. 58, 1 (2022).

    Article  Google Scholar 

  6. T. Jungwirth, X. Marti, P. Wadley, et al., Nat. Nanotechnol. 3, 231 (2016). https://doi.org/10.1038/nnano.2016.18

    Article  ADS  Google Scholar 

  7. L. A. Prozorova and B. Ya. Kotyuzhanskii, Phys. B+C (Amsterdam, Neth.) 86–88, 1061 (1977). doi (77)90797-5https://doi.org/10.1016/0378-4363

  8. V. S. L’vov and L. A. Prozorova, in Modern Problems in Condensed Matter Sciences, Ed. by A. S. Borovik-Romanov and S. K. Sinha (Elsevier, Amsterdam, 1988), Vol. 22, p. 233.

    Google Scholar 

  9. L. A. Prozorova and A. I. Smirnov, Sov. Phys. JETP 47, 812 (1978).

    ADS  Google Scholar 

  10. H.-A. Krug von Nidda, L. E. Svistov, and L. A. Prozorova, Low Temp. Phys. 36, 736 (2010). https://doi.org/10.1063/1.3490859

    Article  ADS  Google Scholar 

  11. P. Grünberg, R. Schreiber, Y. Pang, et al., Phys. Rev. Lett. 57, 2442 (1986). https://doi.org/10.1103/PhysRevLett.57.2442

    Article  ADS  Google Scholar 

  12. E. Albisetti, S. Tacchi, R. Silvani, et al., Adv. Mater. 32, 1906439 (2020).

  13. B. Heinrich, and J. F. Cochran, Adv. Phys. 42, 523 (1993). https://doi.org/10.1080/00018739300101524

    Article  ADS  Google Scholar 

  14. R. A. Gallardo, T. Schneider, A. K. Chaurasiya, et al., Phys. Rev. Appl. 12, 034012 (2019). https://doi.org/10.1103/PhysRevApplied.12.034012

  15. P. I. Gerevenkov, V. D. Bessonov, V. S. Teplov, et al., Nanoscale 15, 6785 (2023). https://doi.org/10.1039/D2NR06003E

    Article  Google Scholar 

  16. J. Topp, D. Heitmann, M. P. Kostylev, et al., Phys. Rev. Lett. 104, 207205 (2010). Doi https://doi.org/10.1103/PhysRevLett.104.207205

  17. M. Krawczyk and D. Grundler, J. Phys.: Condens. Matter 26, 123202 (2014). https://doi.org/10.1088/0953-8984/26/12/123202

  18. G. Gubbiotti, X. Zhou, Z. Haghshenasfard, et al., Phys. Rev. B 97, 134428 (2018). Doi https://doi.org/10.1103/PhysRevB.97.134428

  19. Ya. Tserkovnyak, A. Brataas, G. E. W. Gerrit, et al., Rev. Mod. Phys. 77, 1375 (2005). https://doi.org/10.1103/RevModPhys.77.1375

    Article  ADS  Google Scholar 

  20. B. Heinrich, Ya. Tserkovnyak, G. Woltersdorf, et al., Phys. Rev. Lett. 90, 187601 (2003). https://doi.org/10.1103/PhysRevLett.90.187601

  21. Y. Kajiwara, K. Harii, S. Takahashi, et al., Nature (London, U.K.) 464, 262 (2010).

    Article  ADS  Google Scholar 

  22. E. Padron-Hernandez, A. Azevedo, and S. M. Rezende, Appl. Phys. Lett. 99, 192511 (2011). https://doi.org/10.1063/1.3660586

  23. L. A. Prozorova and A. S. Borovik-Romanov, JETP Lett. 10, 201 (1969).

    ADS  Google Scholar 

  24. T. Satoh, Yu. Terui, R. Moriya, et al., Nat. Photon. 6, 662 (2012). https://doi.org/10.1038/nphoton.2012.218

    Article  ADS  Google Scholar 

  25. Y. Au, M. Dvornik, T. Davison, et al., Phys. Rev. Lett. 110, 097201 (2013). https://doi.org/10.1103/PhysRevLett.110.097201

  26. N. E. Khokhlov, P. I. Gerevenkov, L. A. Shelukhin, et al., Phys. Rev. Appl. 12, 044044 (2018). https://doi.org/10.1103/PhysRevApplied.12.044044

  27. J. R. Hortensius, D. Afanasiev, M. Matthiesen, et al., Nat. Phys. 17, 1001 (2021). https://doi.org/10.1038/s41567-021-01290-4

    Article  Google Scholar 

  28. F. Formisano, T. T. Gareev, D. I. Khusyainov, et al., arXiv: 2303.06996. https://doi.org/10.48550/arXiv.2303.06996

  29. I. V. Savochkin, M. Jäckl, V. I. Belotelov, et al., Sci. Rep. 7, 5668 (2017). https://doi.org/10.1038/s41598-017-05742-x

    Article  ADS  Google Scholar 

  30. I. Yoshimine, Y. Y. Tanaka, T. Shimura, et al., Europhys. Lett. 117, 67001 (2017). https://doi.org/10.1209/0295-5075/117/67001

    Article  ADS  Google Scholar 

  31. N. E. Khokhlov, A. E. Khramova, Ia. A. Filatov, et al., J. Magn. Magn. Mater. 534, 168018 (2021).

  32. S. Muralidhar, R. Khymyn, A. A. Awad, et al., Phys. Rev. Lett. 126, 037204 (2021). https://doi.org/10.1103/PhysRevLett.126.037204

  33. P. I. Gerevenkov, D. V. Kuntu, Ia. A. Filatov, et al., Phys. Rev. Mater. 5, 094407 (2021). https://doi.org/10.1103/PhysRevMaterials.5.094407

  34. A. E. Khramova, M. Kobecki, I. A. Akimov, et al., Phys. Rev. B 107, 064415 (2023). https://doi.org/10.1103/PhysRevB.107.064415

  35. M. Vogel, A. V. Chumak, E. H. Waller, et al., Nat. Phys. 11, 487 (2015). https://doi.org/10.1038/nphys3325

    Article  Google Scholar 

  36. A. V. Sadovnikov, E. N. Beginin, S. E. Sheshukova, et al., Phys. Rev. B 99, 054424 (2019). https://doi.org/10.1103/PhysRevB.99.054424

  37. A. J. Schellekens, K. C. Kuiper, R. R. J. C. de Wit, et al., Nat. Commun. 5, 4333 (2014). https://doi.org/10.1038/ncomms5333

    Article  ADS  Google Scholar 

  38. A. P.Danilov, A. V. Scherbakov, B. A. Glavin, et al., Phys. Rev. B 98, 060406 (2018). https://doi.org/10.1103/PhysRevB.98.060406

  39. P. Omelchenko, E. Montoya, E. Girt, et al., J. Exp. Theor. Phys. 131, 113 (2020). https://doi.org/10.1134/S1063776120070080

    Article  ADS  Google Scholar 

  40. J. Leliaert and J. Mulkers, J. Appl. Phys. 125, 180901 (2019). https://doi.org/10.1063/1.5093730

  41. M. J. Donahue and D. G. Porter, Tech. Rep. NISTIR 6376 (Natl. Inst. Stand. Technol., Gaithersburg, MD, 1999). https://doi.org/10.6028/NIST.IR.6376

    Book  Google Scholar 

  42. X. Joyeux, T. Devolder, J.-V. Kim, et al., J. Appl. Phys. 110, 063915 (2011). https://doi.org/10.1063/1.3638055

  43. M. van Kampen, C. Jozsa, J. T. Kohlhepp, et al., Phys. Rev. Lett. 88, 227201 (2002). https://doi.org/10.1103/PhysRevLett.88.227201

  44. E. Carpene, E. Mancini, D. Dazzi, et al., Phys. Rev. B 81, 060415 (2010). https://doi.org/10.1103/PhysRevB.81.060415

  45. A. M. Kalashnikova, N. E. Khokhlov, L. A. Shelukhin, et al., Zh. Tekh. Fiz. 91, 1848 (2021).

    Google Scholar 

  46. E. Carpene, E. Mancini, C. Dallera, et al., J. Appl. Phys. 108, 063919 (2010). https://doi.org/10.1063/1.3488639

  47. Ia. A. Filatov, P. I. Gerevenkov, M. Wang, et al., Appl. Phys. Lett. 120, 112404 (2022). https://doi.org/10.1063/5.0077195

  48. S. Iihama, Y. Sasaki, A. Sugihara, et al., Phys. Rev. B 94, 020401 (2016). https://doi.org/10.1103/PhysRevB.94.020401

  49. Ia. A. Filatov, P. I. Gerevenkov, M. Wang, et al., J. Phys.: Conf. Ser. 1679, 012193 (2020).

  50. S.-J. Yun, Ch.-G. Cho, and S.-B. Choe, Appl. Phys. Express 8, 063009 (2015). https://doi.org/10.7567/APEX.8.063009

  51. K. Sekiguchi, S.-W. Lee, H. Sukegawa, et al., NPG Asia Mater. 9, e392 (2017). https://doi.org/10.1038/am.2017.87

Download references

ACKNOWLEDGMENTS

We are grateful to P.I. Gerevenkov for the useful discussions.

Funding

The work of N.E. Khokhlov was supported by the Russian Science Foundation (project no. 22-22-00326, https://rscf.ru/project/22-22-00326/). A.M. Kalashnikova thanks the Government of the Russian Federation for State support of scientific research conducted under the leadership of leading scientists in Russian educational institutions of the higher education, scientific institutions, and State scientific centers of the Russian Federation (project no. 076-15-2022-1098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Fedianin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

This article is prepared for the memorial issue of the journal dedicated to the 95th birthday of L.A. Prozorova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedianin, A.E., Khokhlov, N.E. & Kalashnikova, A.M. Propagation of a Laser-Induced Magnetostatic Wave Packet in a Pseudo Spin Valve in the Presence of Spin Pumping. J. Exp. Theor. Phys. 137, 453–462 (2023). https://doi.org/10.1134/S1063776123100035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123100035

Navigation