Skip to main content
Log in

Vortex Dynamics in Superconducting MoN Strip with a Side Cut

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2023

This article has been updated

Abstract

Transport characteristics of superconducting MoN strips with a single side cut near one of the superconductor edges in zero and weak magnetic fields are studied experimentally and theoretically. The presence of the cut makes it possible to observe regimes with one and several simultaneously moving Abrikosov vortices, the number of which is controlled by the value of the applied current. A change in the number of vortices is accompanied with the emergence of a “kink” on the current–voltage characteristic, which can be clearly distinguished in the dependence of the differential resistance on the current. This makes it possible to find average velocity \({\bar {v}}\) of vortices (including a single vortex) and the current/voltage ranges with the known number of moving vortices. The vortex velocity determined in this way for our superconducting strips turns out to be weakly depending on the current and is close to maximal value \({{{\bar {v}}}_{{\max }}}\) ≈ 3 km/s, for which a superconductor transition to the normal state occurs. The maximal velocity value is comparable with the known values for superconductors of types Nb, NbN as well as, and YBCO, but is several times smaller than for superconductors of types MoSi, NbC, and Pb. The fact that difference in the maximal velocities of vortices is associated with different times of variation of the superconducting order parameter magnitude in different superconducting materials is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Change history

REFERENCES

  1. O. V. Dobrovolskiy, D. Yu. Vodolazov, F. Porrati, R. Sachser, V. M. Bevz, M. Yu. Mikhailov, A. V. Chumak, and M. Huth, Nat. Commun. 11, 3291 (2020).

    Article  ADS  Google Scholar 

  2. B. Budinska, B. Aichner, D. Yu. Vodolazov, M. Yu. Mikhailov, F. Porrati, M. Huth, A. V. Chumak, W. Lang, and O. V. Dobrovolskiy, Phys. Rev. A 17, 034072 (2022).

  3. D. Y. Vodolazov, Phys. Rev. A 7, 034014 (2017).

  4. B. I. Ivlev, S. Mejia-Rosales, and M. N. Kunchur, Phys. Rev. B 60, 12419 (1999).

    Article  ADS  Google Scholar 

  5. L. N. Bulaevskii and E. M. Chudnovsky, Phys. Rev. B 72, 094518 (2005).

  6. O. V. Dobrovolskiy, Q. Wang, D. Yu. Vodolazov, B. Budinska, R. Sachser, A. V. Chumak, M. Huth, and A. I. Buzdin, arXiv: 2103.10156v1 (2021).

  7. A. Shekhter, L. N. Bulaevskii, and C. D. Batista, Phys. Rev. Lett. 106, 037001 (2011).

  8. A. A. Bespalov, A. S. Melnikov, and A. I. Buzdin, Phys. Rev. B 89, 054516(2014).

  9. A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, Nat. Phys. 11, 453 (2015).

    Article  Google Scholar 

  10. D. Bozhko, V. Vasyuchka, A. Chumak, and A. Serga, Low Temp. Phys. 46, 462 (2020). https://doi.org/10.1063/10.0000872

    Article  Google Scholar 

  11. I. A. Golovchanskiy, N. N. Abramov, V. S. Stolyarov, V. V. Bolginov, V. V. Ryazanov, A. A. Golubov, and A. V. Ustinov, Adv. Funct. Mater. 28, 1802375 (2018).

  12. O. V. Dobrovolskiy, R. Sachser, T. Brächer, T. Böttcher, V. V. Kruglyak, R. V. Vovk, V. A. Shklovskij, M. Huth, B. Hillebrands, and A. V. Chumak, Nat. Phys. 15, 477 (2019). https://doi.org/10.1038/s41567-019-0428-5

    Article  Google Scholar 

  13. J. Bardeen and M. J. Stephen, Phys. Rev. A 140, 1197 (1965).

    Article  ADS  Google Scholar 

  14. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1996).

    Google Scholar 

  15. A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 41, 960 (1975).

    ADS  Google Scholar 

  16. L. E. Musienko, I. M. Dmitrienko, and V. G. Volotskaya, JETP Lett. 31, 567 (1980).

    ADS  Google Scholar 

  17. A. I. Bezuglyj and V. A. Shklovskij, Phys. C (Amsterdam, Neth.) 202, 234 (1992).

  18. D. Yu. Vodolazov, Supercond. Sci. Technol. 32, 115013 (2019).

  19. K. S. Ilin, M. Lindgren, M. Currie, A. D. Semenov, G. N. Goltsman, and R. Sobolewski, Appl. Phys. Lett. 76, 2752 (2000).

    Article  ADS  Google Scholar 

  20. L. Zhang, L. You, X. Yang, J. Wu, C. Lv, Q. Guo, W. Zhang, H. Li, W. Peng, Z. Wang, and X. Xie, Sci. Rep. 8, 1486 (2018).

    Article  ADS  Google Scholar 

  21. A. V. Silhanek, A. Leo, G. Grimaldi, G. R. Berdiyorov, M. V. Milosevic, A. Nigro, S. Pace, N. Verellen, W. Gillijns, V. Metlushko, B. Ilic, Xiaobin Zhu, and V. V. Moshchalkov, New J. Phys. 14, 053006 (2012).

  22. V. A. Shklovskij, A. P. Nazipova, and O. V. Dobrovolskiy, Phys. Rev. B 95, 184517 (2017).

  23. O. V. Dobrovolskiy, V. A. Shklovskij, M. Hanefeld, M. Zorb, L. Kohs, and M. Huth, Supercond. Sci. Technol. 30, 085002 (2017).

  24. A. I. Bezuglyj, V. A. Shklovskij, R. V. Vovk, V. M. Bevz, M. Huth, and O. V. Dobrovolskiy, Phys. Rev. B 99, 174518 (2019).

  25. S. S. Ustavschikov, M. Yu. Levichev, I. Yu. Pashenkin, A. M. Klushin, and D. Yu. Vodolazov, Supercond. Sci. Technol. 34, 015004 (2021).

  26. G. Grimaldi, A. Leo, P. Sabatino, G. Carapella, A. Nigro, S. Pace, V. V. Moshchalkov, and A. V. Silhanek, Phys. Rev. B 92, 024513 (2015).

  27. L. G. Aslamazov and A. I. Larkin, Sov. Phys. JETP 41, 381 (1975).

    ADS  Google Scholar 

  28. A. K. Geim, S. V. Dubonos, J. G. S. Lok, M. Henini, and J. C. Maan, Nature (London, U. K.) 396, 144 (1998).

    Article  ADS  Google Scholar 

  29. V. M. Bevz, B. Budinska, S. Lamb-Camarena, S. O. Shpilinska, C. Schmid, M. Yu. Mikhailov, W. Lang, and O. V. Dobrovolskiy, Phys. Status Solidi (RRL) 2200513 (2023). https://doi.org/10.1002/pssr.202200513

  30. V. M. Bevz, M. Yu. Mikhailov, B. Budinská, S. Lamb-Camarena, S. O. Shpilinska, A. V. Chumak, M. Urbánek, M. Arndt, W. Lang, and O. V. Dobrovolskiy, Phys. Rev. Appl. 19, 034098 (2023).

  31. A. Leo, G. Grimaldi, R. Citro, A. Nigro, S. Pace, and R. P. Huebener, Phys. Rev. B 84, 014536 (2011).

  32. M. J. M. E. de Nivelle, G. J. Gerritsma, and H. Rogalla, Phys. C (Amsterdam, Neth.) 233, 185 (1994).

  33. M. V. Pedyash, G. J. Gerritsma, D. H. A. Blank, and H. Rogalla, IEEE Trans. Appl. Supercond. 5, 1387 (1995).

    Article  ADS  Google Scholar 

  34. L. Embon, Y. Anahory, Z. L. Jelic, E. O. Lachman, Y. Myasoedov, M. E. Huber, G. P. Mikitik, A. V. Silhanek, M. V. Milosevic, A. Gurevich, and E. Zeldov, Nat. Commun. 8, 85 (2017).

    Article  ADS  Google Scholar 

  35. S. S. Ustavshchikov, M. Yu. Levichev, N. Yu. Pashen’kin, N. S. Gusev, S. A. Gusev, and D. Yu. Vodolazov, JETP Lett. 115, 626 (2022).

    Article  ADS  Google Scholar 

  36. S. S. Ustavshchikov, M. Yu. Levichev, N. Yu. Pashenkin, N. S. Gusev, S. A. Gusev, and D. Yu. Vodolazov, J. Exp. Theor. Phys. 135, 226 (2022).

    Article  ADS  Google Scholar 

  37. P. Du, W. A. Kibbe, and S. M. Lin, Bioinformatics 22, 2059 (2006).

    Article  Google Scholar 

  38. N. Haberkorn, Thin Solid Films 759, 139475 (2022).

  39. Z. L. Xiao, P. Voss-de Haan, G. Jakob, T. Kluge, P. Haibach, H. Adrian, and E. Y. Andrei, Phys. Rev. B 59, 1481 (1999).

    Article  ADS  Google Scholar 

  40. B. I. Ivlev and N. B. Kopnin, Adv. Phys. 33, 47 (1984).

    Article  ADS  Google Scholar 

  41. Y. Korneeva, I. Florya, S. Vdovichev, M. Moshkova, N. Simonov, N. Kaurova, A. Korneev, and G. Goltsman, IEEE Trans. Appl. Supercond. 27, 2201504 (2017).

  42. A. I. Bezuglyj, V. A. Shklovskij, B. Budinska, B. Aichner, V. M. Bevz, M. Yu. Mikhailov, D. Yu. Vodolazov, W. Lang, and O. V. Dobrovolskiy, Phys. Rev. B 105, 214507 (2022).

  43. D. Y. Vodolazov and F. M. Peeters, Phys. Rev. B 76, 014521 (2007).

  44. L. G. Aslamazov and S. V. Lempitskii, Sov. Phys. JETP 57, 1291 (1983).

    ADS  Google Scholar 

  45. S. V. Lempitskii, Sov. Phys. JETP 63, 462 (1986).

    ADS  Google Scholar 

  46. M. Tinkham, Proc. NATO Adv. Study Inst. B 65, 231 (1981).

  47. J. A. Pals and J. Wolter, Phys. Lett. A 70, 150 (1979).

    Article  ADS  Google Scholar 

  48. F. S. Jelila, J. P. Maneval, F. R. Ladan, F. Chibane, A. Marie-de-Ficquelmont, L. Mechin, J. C. Villegier, M. Aprili, and J. Lesueur, Phys. Rev. Lett. 81, 1933 (1998).

    Article  ADS  Google Scholar 

  49. R. J. Watts-Tobin, Y. Krahenbuhl, and L. Kramer, J. Low Temp. Phys. 42, 459 (1981).

    Article  ADS  Google Scholar 

  50. D. Y. Vodolazov and F. M. Peeters, Phys. Rev. B 81, 184521 (2010).

Download references

Funding

This study was carried out under the state assignment for the Institute of Physics of Microstructures, Russian Academy of Science, no. FFUF-2021-0020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Ustavschikov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

The original online version of this article was revised: Surname of the first author should read Ustavschikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustavschikov, S.S., Levichev, M.Y., Pashen’kin, I.Y. et al. Vortex Dynamics in Superconducting MoN Strip with a Side Cut. J. Exp. Theor. Phys. 137, 372–383 (2023). https://doi.org/10.1134/S1063776123090169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123090169

Navigation