Skip to main content
Log in

Higher-Order Harmonics in Hexagonal Graphene Quantum Dots

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have considered the high-order harmonic generation in plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge–Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such case dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. D. von der Linde, T. Engers, G. Jenke, P. Agostini, G. Grillon, E. Nibbering, A. Mysyrowicz, and A. Antonetti, Phys. Rev. A 52, R25(R) (1995).

  2. P. A. Norreys, M. Zepf, S. Moustaizis, A. P. Fews, J. Zhang, P. Lee, M. Bakarezos, C. N. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, F. N. Walsh, J. S. Wark, and A. E. Dangor, Phys. Rev. Lett. 76, 1832 (1996).

    Article  ADS  Google Scholar 

  3. S. Ghimire, A. D. Di Chiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, Nat. Phys. 7, 138 (2011).

    Article  Google Scholar 

  4. G. Vampa, T. J. Hammond, N. Thire, B. E. Schmidt, F. Legare, C. R. McDonald, T. Brabec, and P. B. Corkum, Nature (London, U.K.) 522, 462 (2015).

    Article  ADS  Google Scholar 

  5. H. K. Avetissian, Relativistic Nonlinear Electrodynamics: The QED Vacuum and Matter in Super-Strong Radiation Fields (Springer, Berlin, 2015).

    MATH  Google Scholar 

  6. G. Ndabashimiye, S. Ghimire, M. Wu, D. A. Browne, K. J. Schafer, M. B. Gaarde, and D. A. Reis, Nature (London, U.K.) 534, 520 (2016).

    Article  ADS  Google Scholar 

  7. Y. L. Li, Y. S. You, S. Ghimire, T. F. Heinz, H. Z. Liu, and D. A. Reis, Nat. Phys. 13, 262 (2017).

    Article  Google Scholar 

  8. Y. Yin, Y. Wu, A. Chew, X. Ren, F. Zhuang, S. Gholam-Mirzaei, M. Chini, Z. Chang, Y. S. You, and S. Ghimire, Nat. Commun. 8, 724 (2017).

    Article  ADS  Google Scholar 

  9. N. Klemke, N. Tancogne-Dejean, G. M. Rossi, Y. Yang, F. Scheiba, R. E. Mainz, G. di Sciacca, A. Rubio, F. X. Kartner, and O. D. Mucke, Nat. Commun. 10, 1319 (2019).

    Article  ADS  Google Scholar 

  10. D. Golde, T. Meier, and S. W. Koch, Phys. Rev. B 77, 075330 (2008).

  11. N. Klemke, O. D. Mucke, A. Rubio, F. X. Kartner, and N. Tancogne-Dejean, Phys. Rev. B 102, 104308 (2020).

  12. I. Kilen, M. Kolesik, J. Hader, J. V. Moloney, U. Huttner, M. K. Hagen, and S. W. Koch, Phys. Rev. Lett. 125, 083901 (2020).

  13. J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. Lett. 68, 3535 (1992).

    Article  ADS  Google Scholar 

  14. R. C. Ashoori, Nature (London, U.K.) 379, 413 (1996).

    Article  ADS  Google Scholar 

  15. T. Chakraborty, Quantum Dots (Elsevier, Amsterdam, 1999).

    Book  Google Scholar 

  16. D. Pan, J. Zhang, Z. Li, and M. Wu, Adv. Mater. 22, 734 (2010).

    Article  Google Scholar 

  17. S. Chung, R. A. Revia, and M. Zhang, Adv. Mater. 33, 1904362 (2021).

  18. H. Sun, L. Wu, W. Wei, and X. Qu, Mater. Today 16, 433 (2013).

    Article  Google Scholar 

  19. M. Bacon, S. J. Bradley, and T. Nann, Part. Part. Syst. Charact. 31, 415 (2014).

    Article  Google Scholar 

  20. K. K. Hansen, D. Bauer, and L. B. Madsen, Phys. Rev. A 97, 043424 (2018).

  21. R. Ganeev, L. Bom, J. Abdul-Hadi, M. Wong, J. Brichta, V. Bhardwaj, and T. Ozaki, Phys. Rev. Lett. 102, 013903 (2009).

  22. R. Ganeev, L. E. Bom, M. C. H. Wong, J. P. Brichta, V. Bhardwaj, P. Redkin, and T. Ozaki, Phys. Rev. A 80, 043808 (2009).

  23. R. A. Ganeev, J. Mod. Opt. 59, 409 (2012).

    Article  ADS  Google Scholar 

  24. G. P. Zhang, Phys. Rev. Lett. 95, 047401 (2005).

  25. G. P. Zhang and T. F. George, Phys. Rev. A 74, 023811 (2006).

  26. G. P. Zhang and T. F. George, J. Opt. Soc. Am. B 24, 1150 (2007).

    Article  ADS  Google Scholar 

  27. L. Jia, Zh. Zhang, D. Z. Yang, Y. Liu, M. S. Si, G. P. Zhang, and Y. S. Liu, Phys. Rev. B 101, 144304 (2020).

  28. G. P. Zhang and Y. H. Bai, Phys. Rev. B 101, 081412 (2020).

  29. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, Phys. Rev. A 49, 2117 (1994).

    Article  ADS  Google Scholar 

  30. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  31. S. Gnawali, R. Ghimire, K. R. Magar, S. J. Hossaini, and V. Apalkov, Phys. Rev. B 106, 075149 (2022).

  32. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    Article  ADS  Google Scholar 

  33. A. D. Guclu, P. Potasz, M. Korkusinski, and P. Hawrylak, Graphene Quantum Dots (Springer, Berlin, 2014).

    Book  Google Scholar 

  34. H. Yoon, M. Park, J. Kim, T. G. Novak, S. Lee, and S. Jeon, Chem. Phys. Rev. 2, 031303 (2021).

  35. E. Goulielmakis and T. Brabec, Nat. Photon. 16, 411 (2022).

    Article  ADS  Google Scholar 

  36. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys 81, 109 (2009).

    Article  ADS  Google Scholar 

  37. H. K. Avetissian, B. R. Avchyan, and G. F. Mkrtchian, J. Phys. B 45, 025402 (2012).

  38. H. K. Avetissian, A. G. Markossian, and G. F. Mkrtchian, Phys. Rev. A 84, 013418 (2011).

  39. H. K. Avetissian, A. G. Markossian, and G. F. Mkrtchian, Phys. Lett. A 375, 3699 (2011).

    Article  ADS  Google Scholar 

  40. G. Vampa, C. R. McDonald, G. Orlando, D. D. Klug, P. B. Corkum, and T. Brabec, Phys. Rev. Lett. 113, 073901 (2014).

  41. G. Vampa, C. R. McDonald, G. Orlando, P. B. Corkum, and T. Brabec, Phys. Rev. B 91, 064302 (2015).

  42. H. K. Avetissian, A. K. Avetissian, B. R. Avchyan, and G. F. Mkrtchian, Phys. Rev. B 100, 035434 (2019).

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to Prof. H.K. Avetissian and Dr. G.F. Mkrtchian for permanent discussions and valuable recommendations.

Funding

This work was supported by the Science Committee of RA in Frames of Project 20TTWS-1C010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Ghazaryan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedrakian, K.V., Ghazaryan, A.G., Avchyan, B.R. et al. Higher-Order Harmonics in Hexagonal Graphene Quantum Dots. J. Exp. Theor. Phys. 137, 395–403 (2023). https://doi.org/10.1134/S1063776123090121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123090121

Navigation