Skip to main content
Log in

Coherent Backscattering Peak for Radiation with Low Spatial Coherence

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The theory is developed and numerical simulation is performed for the coherent backscattering effect in a strongly inhomogeneous random medium with a finite spatial coherence length. It is shown using the Monte Carlo method that the limitation imposed on the number of scattering events corresponds to lowering of incident radiation coherence and leads to angular broadening of the backscattering peak, extending the possibility of using coherent backscattering in biomedical applications. Based on the diagrammatic technique, the modeling of coherent backscattering is developed for the first time beyond the frames of the ladder approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. K. M. Watson, J. Math. Phys. 10, 688 (1969).

    Article  ADS  Google Scholar 

  2. D. A. de Wolf, IEEE Trans. Antenn. Propag. 19, 254 (1971).

    Article  ADS  Google Scholar 

  3. Yu. N. Barabanenkov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, 88 (1973).

    MathSciNet  Google Scholar 

  4. A. G. Vinogradov, Yu. A. Kravtsov, and V. I. Tatarskii, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, 1064 (1973).

    Google Scholar 

  5. Y. Kuga and A. Ishimaru, J. Opt. Soc. Am. A 1, 831 (1984).

    Article  ADS  Google Scholar 

  6. M. P. van Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985).

    Article  ADS  Google Scholar 

  7. P.-E. Wolf and G. Maret, Rev. Lett. 55, 2696 (1985).

    Article  ADS  Google Scholar 

  8. E. Akkermans, P. Wolf, R. Maynard, and G. Maret, J. Phys. (France) 49, 77 (1988).

    Article  ADS  Google Scholar 

  9. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev. Lett. 60, 1134 (1988).

    Article  ADS  Google Scholar 

  10. P. Wolf, G. Maret, E. Akkermans, and R. Maynard, J. Phys. (France) 49, 63 (1988).

    Article  Google Scholar 

  11. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, Rep. Prog. Phys. 73, 076701 (2010).

  12. A. P. Tran, S. Yan, and Q. Fang, Neurophoton. 7, 015008 (2020).

  13. A. Sabeeh and V. V. Tuchin, J. Biomed. Photon. Eng. 6, 040201 (2020).

  14. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics (IPR Media, Moscow, 2021; SPIE Press, Bellingham, WA, 2007).

  15. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, Rev. Sci. Instrum. 71, 2500 (2000).

    Article  ADS  Google Scholar 

  16. R. C. Haskell, L. O. Svaasand, T.-T.Tsay, T.-C. Feng, B. J. Tromberg, and M. S. McAdams, J. Opt. Soc. Am. A 11, 2727 (1994).

    Article  ADS  Google Scholar 

  17. D. A. Boas, L. E. Campbell, and A. G. Yodh, Phys. Rev. Lett. 75, 1855 (1995).

    Article  ADS  Google Scholar 

  18. X. Cheng, D. Tamborini, S. A. Carp, O. Shatrovoy, B. Zimmerman, D. Tyulmankov, A. Siegel, M. Blackwell, M. A. Franceschini, and D. A. Boas, Opt. Lett. 43, 2756 (2018).

    Article  ADS  Google Scholar 

  19. H. Wabnitz, J. Rodriguez, I. Yaroslavsky, A. Yaroslavsky, and V. V. Tuchin, Handbook of Optical Biomedical Diagnostics. Light-Tissue Interaction (SPIE Press, Bellingham, 2016), Vol. 1.

    Google Scholar 

  20. D. A. Boas, S. Sakadzic, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, Neurophotonics 3, 031412 (2016).

  21. S. Etemad, R. Thompson, M. J. Andrejco, S. John, and F. C. MacKintosh, Phys. Rev. Lett. 59, 1420 (1987).

    Article  ADS  Google Scholar 

  22. T. Okamoto and T. Asakura, Opt. Lett. 21, 369 (1996).

    Article  ADS  Google Scholar 

  23. A. Wax, C. Yang, and J. A. Izatt, Opt. Lett. 28, 1230 (2003).

    Article  ADS  Google Scholar 

  24. Y. L. Kim, P. Pradhan, H. Subramanian, Y. Liu, M. H. Kim, and V. Backman, Opt. Lett. 31, 1459 (2006).

    Article  ADS  Google Scholar 

  25. Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, H. Subramanian, P. Pradhan, and V. Backman, J. Biomed. Opt. 11, 041125 (2006).

  26. H. Subramanian, P. Pradhan, Y. L. Kim, Y. Liu, X. Li, and V. Backman, Appl. Opt. 45, 6292 (2006).

    Article  ADS  Google Scholar 

  27. M. Xu, Opt. Lett. 33, 1246 (2008).

    Article  ADS  Google Scholar 

  28. J. Liu, Z. Xu, Q. Song, R. L. Konger, and Y. L. Kim, J. Biomed. Opt. 15, 037011 (2010).

  29. D. S. Wiersma, M. P. van Albada, and A. Lagendijk, Phys. Rev. Lett. 75, 1739 (1995).

    Article  ADS  Google Scholar 

  30. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 2: Correlation Theory of Random Processes (Nauka, Moscow, 1978; Springer, Berlin, 1988).

  31. V. Kuzmin, V. Romanov, and L. Zubkov, Phys. Rep. 248, 71 (1994).

    Article  ADS  Google Scholar 

  32. V. L. Kuz’min, J. Exp. Theor. Phys. 100, 1035 (2005).

    Article  ADS  Google Scholar 

  33. L. Wang, S. L. Jacques, and L. Q. Zheng, Comput. Methods Prog. Biol. 47, 131 (1995).

    Article  Google Scholar 

  34. L. Devroye, Non-Uniform Random Variate Generation (Springer, New York, 1986).

    Book  MATH  Google Scholar 

  35. V. L. Kuz’min and A. Yu. Val’kov, JETP Lett. 105, 283 (2017).

    Article  ADS  Google Scholar 

  36. V. L. Kuz’min, A. Yu. Val’kov, and L. A. Zubkov, J. Exp. Theor. Phys. 128, 396 (2019).

    Article  ADS  Google Scholar 

  37. T. M. Nieuwenhuizen and J. M. Luck, Phys. Rev. E 48, 569 (1993).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 23-22-00035), https://rscf.ru/project/23-22-0035/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. L. Kuzmin, A. Yu. Valkov or Yu. A. Zhavoronkov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, V.L., Valkov, A.Y. & Zhavoronkov, Y.A. Coherent Backscattering Peak for Radiation with Low Spatial Coherence. J. Exp. Theor. Phys. 137, 294–301 (2023). https://doi.org/10.1134/S1063776123090108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123090108

Navigation