Skip to main content
Log in

On Estimation Methods of Depolarization Losses for Ultracold Neutrons in Magnetic Traps

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The problem of finding the depolarization losses of neutrons is investigated in connection with the need to determine the systematic error for experiments with magnetic storage of ultracold neutrons in traps. In this paper, we consider three methods to estimate the neutrons depolarization probability: classical, quantum mechanical and approximate one. They are used to estimate the depolarization probability of ultracold neutrons in two magnetic traps: the trap developed in Los Alamos National Laboratory (LANL) and the one designed in the neutron physics laboratory of “NRC Kurchatov Institute”—PNPI. It is shown that all three methods are successfully used to estimate depolarization. This is of particular importance to compare of theoretical predictions with the results of measurement in experiments to determine the neutron lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2017).

  2. V. V. Vladimirskii, Sov. Phys. JETP 12, 740 (1960).

    Google Scholar 

  3. Yu. Yu. Kosvintsev, Yu. A. Kushnir, and V. I. Morozov, Sov. Phys. JETP 50, 642 (1979).

    ADS  Google Scholar 

  4. Y. G. Abov, V. V. Vasiliev, V. V. Vladimirskii, and I. B. Rozhnin, JETP Lett. 44, 369 (1986).

    Google Scholar 

  5. V. F. Ezhov, B. A. Bazarov, P. Geltenbort, N. A. Kovrizhnykh, G. B. Krygin, V. L. Ryabov, and A. P. Serebrov, Tech. Phys. Lett. 27, 1055 (2001).

    Article  ADS  Google Scholar 

  6. V. F. Ezhov and V. L. Ryabov JETP Lett. 117, 2 (2023).

    Article  Google Scholar 

  7. Yu. A. Mostovoi, K. N. Mukhin, and O. O. Patarakin, Phys. Usp. 39, 925 (1996).

    Article  ADS  Google Scholar 

  8. F. Wietfeldt and G. L. Greene, Rev. Mod. Phys. 83, 1173 (2011).

    Article  ADS  Google Scholar 

  9. W. Paul and F. Anton, Z. Phys. C 45, 25 (1989).

    Article  Google Scholar 

  10. J. M. Robson, Phys. Rev. 83, 349 (1951).

    Article  ADS  Google Scholar 

  11. P. E. Spivak et al. JETP Lett. 67, 1735 (1988).

    Google Scholar 

  12. A. T. Yue, M. S. Dewey, D. M. Gilliam, et al., Phys. Rev. Lett. 111, 222501 (2013).

  13. R. W. Jr. Pattie, N. B. Callahan, C. Cude-Woods, et al., Science 360 (6389), 627 (2018). https://doi.org/10.1126/science.aan8895

    Article  ADS  Google Scholar 

  14. A. P. Serebrov et al., Phys. Lett. B 605, 72 (2005).

    Article  ADS  Google Scholar 

  15. A. P. Serebrov and A. K. Fomin, Phys. Proc. 199, 17 (2011).

    Google Scholar 

  16. A. P. Serebrov, Phys. Usp. 58, 1074 (2015).

    Article  ADS  Google Scholar 

  17. A. P. Serebrov, Phys. Usp. 62, 596 (2019).

    Article  ADS  Google Scholar 

  18. E. Majorana, Nuovo Cim. 9, 43 (1932).

    Article  ADS  Google Scholar 

  19. P. L. Walstrom et al., Nucl. Instrum. Methods Phys. Res., Sect. A 82, 599 (2009).

    Google Scholar 

  20. A. Steyerl et al., Phys. Rev. C 86, 065501 (2012).

  21. Yu. N. Pokotilovski, JETP Lett. 76, 131 (2002);

    Article  ADS  Google Scholar 

  22. JETP Lett. 78, 422(E) (2003).

  23. H. Kuwabara, Y. Yamauchi, and A. Pratt, J. Korean Phys. Soc. 62, 1286 (2013).

    Article  ADS  Google Scholar 

  24. J. Schwinger, Phys. Rev. 51, 648 (1937).

    Article  ADS  Google Scholar 

  25. I. I. Rabi, Phys. Rev. 51, 652 (1937).

    Article  ADS  Google Scholar 

  26. I. I. Rabi, N. F. Ramsey, and J. Schwinger, Rev. Mod. Phys. 26, 167 (1954).

    Article  ADS  Google Scholar 

  27. I. M. Matora, Sov. J. Nucl. Phys. 16, 349 (1972).

    Google Scholar 

  28. A. Saunders, D. Salvat, E. Adamek, et al., in Next Generation Experiments to Measure the Neutron Lifetime, Proceedings of the Workshop (World Scientific, 2014), p. 135.

Download references

ACKNOWLEDGMENTS

The authors thank A.N. Murashkin, E.A. Kolomenskii, S.N. Ivanov, and A.K. Fomin for helpful discussions while working on the paper and N.P. Vasilyeva for help in translating the paper.

Funding

The study has been carried out with the support from the Russian Science Foundation, grant no. 23-22-00169, https://rscf.ru/project/23-22-00169/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Klyushnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyushnikov, G.N., Serebrov, A.P. On Estimation Methods of Depolarization Losses for Ultracold Neutrons in Magnetic Traps. J. Exp. Theor. Phys. 137, 316–327 (2023). https://doi.org/10.1134/S1063776123090054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123090054

Navigation