Skip to main content
Log in

Influence of Impurities on Adhesion at the TiAl/Al2O3 Interface

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The influence of substitutional impurities on adhesion at the TiAl/Al2O3 interface with an oxygen termination has been studied by the projector augmented-wave method within the density functional theory. It has been shown that transition metals and a number of s,p-elements substituting for the interfacial titanium atom reduce adhesion, whereas Group VB and VIB elements enhance chemical bonding at the interface. The local densities of states, charge density distribution, overlap populations for interfacial atom bonding, and other electronic characteristics have been calculated that make it possible to reveal key factors influencing adhesion at the alloy–oxide interface. A correlation has been found between the influence of impurities on bonding energy at the inner and outer interfaces. A comparison of obtained data with those for the interface with Ti-enriched Ti3Al alloy shows that the interface loses strength with decreasing Ti content in the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Z. Li and W. Gao, in Intermetallics Research Progress, Ed. by Y. N. Berdovsky (Nova Science, New York, 2008), p. 1.

    Google Scholar 

  2. J. Dai, J. Zhu, C. Chen, et al., J. Alloys Compd. 685, 784 (2016).

    Article  Google Scholar 

  3. M. R. Shanabarger, Appl. Surf. Sci. 134, 179 (1998).

    Article  ADS  Google Scholar 

  4. V. Maurice, G. Despert, S. Zanna, et al., Acta Mater. 55, 3315 (2007).

    Article  ADS  Google Scholar 

  5. T. Izumi, T. Yoshioka, S. Hayashi, et al., Intermetallics 9, 547 (2001).

    Article  Google Scholar 

  6. L. Y. Kong, J. Z. Qi, B. Lu, et al., Surf. Coat. Technol. 204, 2262 (2010).

    Article  Google Scholar 

  7. T. Sasaki, T. Yagi, T. Watanabe, et al., Surf. Coat. Technol. 205, 3900 (2011).

    Article  Google Scholar 

  8. M. Sebastiani and E. Bemporad, Intermetallics 37, 76 (2013).

    Article  Google Scholar 

  9. J. Q. Wang, L. Y. Kong, T. F. Li, et al., J. Therm. Spray Technol. 24, 467 (2015).

    Article  ADS  Google Scholar 

  10. J. Q. Wang, L. Y. Kong, T. F. Li, et al., Appl. Surf. Sci. 361, 90 (2016).

    Article  ADS  Google Scholar 

  11. J. Q. Wang, L. Y. Kong, J. Wu, et al., Appl. Surf. Sci. 356, 827 (2015).

    Article  ADS  Google Scholar 

  12. J. Huang, F. Zhao, X. Cui, et al., Appl. Surf. Sci. 582, 152444 (2022).

  13. H. Li, L. Liu, S.Wang, et al., Acta Metall. Sin. 42, 897 (2006).

    Google Scholar 

  14. S. Y. Liu, J. X. Shang, F. H. Wang, et al., Phys. Rev. B 79, 075419 (2009).

  15. H. Li, S. Wang, and H. Ye, J. Mater. Sci. Technol. 25, 569 (2009).

    Google Scholar 

  16. S. Y. Liu, J. X. Shang, F. H. Wang, et al., J. Phys.: Condens. Matter 21, 225005 (2009).

  17. Y. Song, J. H. Dai, and R. Yang, Surf. Sci. 606, 852 (2012).

    Article  ADS  Google Scholar 

  18. S. E. Kulkova, A. V. Bakulin, Q. M. Hu, et al., Comput. Mater. Sci. 97, 55 (2015).

    Article  Google Scholar 

  19. L. Wang, J. X. Shang, F. H. Wang, et al., Acta Mater. 61, 1726 (2013).

    Article  ADS  Google Scholar 

  20. S. E. Kulkova, A. V. Bakulin, and S. S. Kulkov, Comput. Mater. Sci. 170, 109136 (2019).

  21. A. V. Bakulin, S. Hocker, S. Schmauder, et al., Appl. Surf. Sci. 487, 898 (2019).

    Article  ADS  Google Scholar 

  22. Y. Koizumi, M. Kishimoto, Y. Minamino, et al., Philos. Mag. A 88, 2991 (2008).

    Article  ADS  Google Scholar 

  23. A. V. Bakulin, A. M. Latyshev, and S. E. Kulkova, J. Exp. Theor. Phys. 125, 138 (2017).

    Article  ADS  Google Scholar 

  24. S. E. Kulkova, A. V. Bakulin, and S. S. Kulkov, Latv. J. Phys. Tech. Sci. 6, 20 (2018).

    Google Scholar 

  25. A. V. Bakulin, S. S. Kulkov, and S. E. Kulkova, J. Exp. Theor. Phys. 130, 579 (2020).

    Article  ADS  Google Scholar 

  26. E. Epifanov and G. Hug, Comput. Mater. Sci. 174, 109475 (2020).

  27. D. Connetable, A. Prillieux, C. Thenot, et al., J. Phys.: Condens. Matter 32, 175702 (2020).

  28. A. V. Bakulin, S. S. Kulkov, and S. E. Kulkova, Intermetallics 137, 107281 (2021).

  29. Y. Song, F. J. Xing, J. H. Dai, et al., Intermetallics 49, 1 (2014).

    Article  Google Scholar 

  30. J. H. Dai, Y. Song, and R. Yang, Intermetallics 85, 80 (2017).

    Article  Google Scholar 

  31. B. Wang, J. Dai, X. Wu, et al., Intermetallics 60, 58 (2015).

    Article  Google Scholar 

  32. Y. Li, J. H. Dai, and Y. Song, Comput. Mater. Sci. 181, 109756 (2020).

  33. A. V. Bakulin, S. S. Kulkov, and S. E. Kulkova, Appl. Surf. Sci. 536, 147639 (2021).

  34. A. V. Bakulin, S. S. Kulkov, and S. E. Kulkova, Russ. Phys. J. 63, 713 (2020).

    Article  Google Scholar 

  35. A. V. Bakulin, S. S. Kulkov, S. E. Kulkova, et al., Metals 10, 1298 (2020).

    Article  Google Scholar 

  36. D. J. Siegel, L. G. Hector, Jr., and J. B. Adams, Phys. Rev. B 65, 085415 (2002).

  37. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  38. G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  39. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  40. M. Lucht, M. Lerche, H. C. Wille, et al., J. Appl. Crystallogr. 36, 1075 (2003).

    Article  ADS  Google Scholar 

  41. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM, Materials Park, OH, 1991).

    Google Scholar 

  42. T. A. Manz and N. G. Limas, RSC Adv. 6, 47771 (2016).

    Article  ADS  Google Scholar 

  43. N. G. Limas and T. A. Manz, RSC Adv. 6, 45727 (2016).

    Article  ADS  Google Scholar 

  44. T. A. Manz, RSC Adv. 7, 45552 (2017).

    Article  ADS  Google Scholar 

  45. W. M. Haynes, CRC Handbook of Chemistry and Physics, 96th ed. (CRC, Taylor Francis, Boca Raton, FL, 2015), p. 9.

Download references

ACKNOWLEDGMENTS

Numerical computation was carried out using the SKIF Cyberia supercomputer at the Tomsk State University.

Funding

Thus study was performed according to the government research assignment for ISPMS SB RAS, project FWRW-2022-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bakulin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakulin, A.V., Kulkov, A.S. & Kulkova, S.E. Influence of Impurities on Adhesion at the TiAl/Al2O3 Interface. J. Exp. Theor. Phys. 137, 362–371 (2023). https://doi.org/10.1134/S1063776123090030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123090030

Navigation