Skip to main content
Log in

Analysis of the Result of the Neutrino-4 Experiment Together with Other Experiments on the Search for Sterile Neutrinos within the 3 + 1 Neutrino Model

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The correspondence of the results obtained in the Neutrino-4 experiment with the results of the NEOS, DANSS, STEREO, and PROSPECT experiments at reactors, the MiniBooNE, LSND, and MicroBoone experiments at accelerators, and the IceCube and BEST experiments with a 51Cr neutrino source is analyzed. The agreement between the results of the Neutrino-4 experiment, the BEST experiment, and the gallium anomaly on the mixing angle is discussed. The discrepancy between the results of the listed direct experiments with the results of the reactor anomaly, as well as with constraints from solar and cosmological data, is discussed. It is shown that the results of these direct experiments on the search for sterile neutrinos and the IceCube experiment do not contradict the Neutrino-4 experiment within the 3 + 1 neutrino model within 3σ contours of experimental errors. The sterile neutrino parameters from the Neutrino-4 and BEST experiments make it possible to estimate the sterile neutrino mass as m4 = (2.70 ± 0.22) eV and the effective mass of the electron neutrino as \({{m}_{{4{{\nu }_{e}}}}}\) = (0.86 ± 0.21) eV. The matrix of the absolute values of the 3 + 1 neutrino model mixing parameters and the mixing scheme are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097

  2. A. Aguilar et al. (LSND Collab.), Phys. Rev. D 64, 112007 (2001); hep-ex/0104049. https://doi.org/10.1103/PhysRevD.64.112007

  3. A. A. Aguilar-Arevalo et al. (MiniBooNE Collab.), Phys. Rev. Lett. 121, 221801 (2018). https://doi.org/10.1103/PhysRevLett.121.221801

  4. G. Mention, M. Fechner, T. Lasserre, T. Mueller, D. Lhuillier, M. Cribier, et al., Phys. Rev. D 83, 073006 (2011). https://doi.org/10.1103/PhysRevD.83.073006

  5. C. Giunti and T. Lasserre, Ann. Rev. Nucl. Part. Sci. 69, 163 (2019). https://doi.org/10.1146/annurevnucl-101918-023755

    Article  ADS  Google Scholar 

  6. W. Hampel et al. (GALLEX Collab.), Phys. Lett. B 420, 114 (1998). https://doi.org/10.1016/S0370-2693(97)01562-1

    Article  ADS  Google Scholar 

  7. J. Abdurashitov et al. (SAGE Collab.), Phys. Rev. C 59, 2246 (1999). https://doi.org/10.1103/PhysRevC.59.2246

    Article  ADS  Google Scholar 

  8. V. Barinov, B. Cleveland, V. Gavrin, D. Gorbunov, and T. Ibragimova, Phys. Rev. D 97, 073001 (2018). https://doi.org/10.1103/PhysRevD.97.073001

  9. S. Gariazzo, P. F. de Salas, and S. Pastor, J. Cosmol. Astropart. Phys., No. 07, 014 (2019).

  10. B. Dasgupta and J. Kopp, Phys. Rev. Lett. 112, 031803 (2014).

  11. A. Serebrov and R. Samoilov, JETP Lett. 112, 199 (2020). https://doi.org/10.1134/S0021364020160122

    Article  ADS  Google Scholar 

  12. A. P. Serebrov et al. (Neutrino-4 Collab.), Phys. Rev. D 104, 032003 (2021). https://doi.org/10.1103/PhysRevD.104.032003

  13. V. V. Barinov et al. (BEST Collab.), Phys. Rev. C 105, 065502 (2022). https://doi.org/10.1103/PhysRevC.105.065502

  14. V. Barinov, V. Gavrin, V. Gorbachev, D. Gorbunov, and T. Ibragimova, Phys. Rev. D 99, 111702 (2019). https://doi.org/10.1103/PhysRevD.99.111702

  15. V. Barinov and D. Gorbunov, Phys. Rev. D 105, L051703 (2022). https://doi.org/10.1103/PhysRevD.105.L051703

  16. K. N. Abazajian et al., arXiv: 1204.5379v1.

  17. C. Giunti, Y. F. Li, C. A. Ternes, and Z. Xin, Phys. Lett. B 829, 137054 (2022).

  18. K. Goldhagen, M. Maltoni, S. Reichard, and Th. Schwetz, Eur. Phys. J. C 82, 116 (2022). https://doi.org/10.1140/epjc/s10052-022-10052-2

    Article  ADS  Google Scholar 

  19. F. P. An et al. (PROSPECT, Daya Bay Collabs.), Phys. Rev. Lett. 128, 081801 (2022). https://doi.org/10.1103/PhysRevLett.128.081801

  20. D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory, 2nd ed. (World Scientific, NJ, 2017). https://doi.org/10.1142/7874

    Book  MATH  Google Scholar 

  21. I. Alekseev et al. (DANSS Collab.), Phys. Lett. B 787, 56 (2018). https://doi.org/10.1016/j.physletb.2018.10.038

    Article  ADS  Google Scholar 

  22. Z. Atif et al. (The RENO and NEOS Collabs.), Phys. Rev. D 105, L111101 (2022). https://doi.org/10.1103/PhysRevD.105.L111101

  23. M. Andriamirado et al. (PROSPECT Collab.), Phys. Rev. D 103, 032001 (2021). https://doi.org/10.1103/PhysRevD.103.032001

  24. H. Almazán et al. (STEREO Collab.), Phys. Rev. D 102, 052002 (2020). https://doi.org/10.1103/PhysRevD.102.052002

  25. M. Licciardi, in Proceedings of the 30th International Conference on Neutrino Physics and Astrophysics (Neutrino 2022). https://indico.kps.or.kr/event/30/contributions/850/attachments/143/309/Slide_Matthieu%20Licciardi.pdf.

  26. M. Aker et al. (KATRIN Collab.), Phys. Rev. Lett. 126, 091803 (2021). https://doi.org/10.1103/PhysRevLett.126.091803

  27. M. Aker et al. (The KATRIN Collab.), Nat. Phys. 18, 160 (2022). https://doi.org/10.1038/s41567-021-01463-1

    Article  Google Scholar 

  28. M. Agostini et al. (GERDA Collab.), Phys. Rev. Lett. 125, 252502 (2020). https://doi.org/10.1103/PhysRevLett.125.252502

  29. K. Abe et al. (T2K Collab.), Phys. Rev. D 91, 051102(R) (2015). https://doi.org/10.1103/PhysRevD.91.051102

  30. M. G. Aartsen et al. (IceCube Collab.), Phys. Rev. Lett. 125, 141801 (2020). https://doi.org/10.1103/PhysRevLett.125.141801

  31. M. G. Aartsen et al. (IceCube Collab.), Phys. Rev. D 102, 052009 (2020). https://doi.org/10.1103/PhysRevD.102.052009

  32. M. Dentler, Á. Hernández-Cabezudo, J. Kopp, et al., J. High Energy Phys. 2018, 10 (2018).

    Article  Google Scholar 

  33. C. A. Argüelles et al., Phys. Rev. Lett. 128, 241802 (2022). https://doi.org/10.1103/PhysRevLett.128.241802

  34. S. Haystotz, P. F. de Salas, S. Gariazzo, M. Gerbino, M. Lattanzi, S. Vagnozzi, K. Freese, and S. Pastor, Phys. Rev. D 104, 123524 (2021). https://doi.org/10.1103/PhysRevD.104.123524

  35. A. P. Serebrov, R. M. Samoilov, M. E. Chaikovskii, and O. M. Zherebtsov, JETP Lett. 116, 669 (2022). https://doi.org/10.1134/S002136402260224X

    Article  ADS  Google Scholar 

  36. C. Rubbia, in Proceedings of the 19th International Workshop on Neutrino Telescopes, February 18–26, 2021. https://agenda.infn.it/event/24250/timetable/#20210218.detailed.

  37. R. Samoilov (Neutrino-4 Collab.), in Proceedings of the 70th International Conference NUCLEUS-2020 on Nuclear Physics and Elementary Particle Physics. https://indico.cern.ch/event/839985/contributions/ 4060591/attachments/2124912/3577374/Samoilov_neutrino-4_nucleus.pdf.

Download references

ACKNOWLEDGMENTS

We are grateful to our colleagues from the Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute and from the Institute for Nuclear Research, Russian Academy of Sciences for useful discussions in seminars. The members of the Neutrino-4 collaboration thank Carlo Rubbia for drawing attention to the results of our experiment.

Funding

This work was supported by the Russian Science Foundation, project no. 20-12-00079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Serebrov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serebrov, A.P., Samoilov, R.M. & Chaikovskii, M.E. Analysis of the Result of the Neutrino-4 Experiment Together with Other Experiments on the Search for Sterile Neutrinos within the 3 + 1 Neutrino Model. J. Exp. Theor. Phys. 137, 55–70 (2023). https://doi.org/10.1134/S1063776123070130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123070130

Navigation