Skip to main content
Log in

Melting Scenarios of Two-Dimensional Systems: Possibilities of Computer Simulation

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Modern theories of melting of two-dimensional systems are discussed that are mainly based on the concepts of the Berezinskii–Kosterlitz–Thouless (BKT) theory of phase transitions in two-dimensional systems with continuous symmetry. Today there exist three basic scenarios of melting of two-dimensional crystals. First of all, this is the Berezinskii–Kosterlitz–Thouless–Halperin–Nelson–Young (BKTHNY) theory, in which two-dimensional crystals are melted through two BKT-type continuous transitions with an intermediate hexatic phase. In this case a first-order phase transition can also occur. The third scenario has recently been proposed by Bernard and Krauth (BK), in which melting can occur through a BKT-type transition; in this case the hexatic phase–isotropic fluid transition is a first-order transition. The review presents a critical analysis of the approaches used to determine the parameters and the type of transition by computer simulation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1971).

    ADS  MathSciNet  Google Scholar 

  2. V. L. Berezinskii, Sov. Phys. JETP 34, 610 (1972).

    ADS  Google Scholar 

  3. J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys. 5, L124 (1972).

    Article  ADS  Google Scholar 

  4. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  5. J. M. Kosterlitz, J. Phys. C: Solid State Phys. 7, 1046 (1974).

    Article  ADS  Google Scholar 

  6. D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).

    Article  ADS  Google Scholar 

  7. P. Minnhagen, Rev. Mod. Phys. 59, 1001 (1987).

    Article  ADS  Google Scholar 

  8. V. N. Ryzhov, E. E. Tareyeva, Y. D. Fomin, and E. N. Tsiok, Phys. Usp. 60, 857 (2017).

    Article  ADS  Google Scholar 

  9. V. N. Ryzhov, Phys. Usp. 60, 114 (2017).

    Article  ADS  Google Scholar 

  10. J. M. Kosterlitz, Rep. Prog. Phys. 79, 026001 (2016).

  11. 40 Years of Berezinskii-Kosterlitz-Thouless Theory, Ed. by J. V. Jose (World Sci., Singapore, 2013).

    MATH  Google Scholar 

  12. B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  13. D. R. Nelson and B. I. Halperin, Phys. Rev. B. 19, 2457 (1979).

    Article  ADS  Google Scholar 

  14. A. P. Young, Phys. Rev. B 19, 1855 (1979).

    Article  ADS  Google Scholar 

  15. V. N. Ryzhov, E. E. Tareeva, Yu. D. Fomin, and E. N. Tsiok, Phys. Usp. 63, 417 (2020).

    Article  ADS  Google Scholar 

  16. V. N. Ryzhov, E. A. Gaiduk, E. E. Tareyeva, Yu. D. Fomin, and E. N. Tsiok, Phys. Part. Nucl. 51, 786 (2020).

    Article  Google Scholar 

  17. K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988).

    Article  ADS  Google Scholar 

  18. N. Shankaraiah, S. Sengupta, and G. I. Menon, J. Chem. Phys. 151, 124501 (2019).

  19. D. Du, M. Doxastakis, E. Hiloua, and S. L. Biswal, Soft Matter 13, 1548 (2017).

    Article  ADS  Google Scholar 

  20. L. A. Padilla and A. Ramirez-Hernandez, J. Phys.: Condens. Matter 32, 275103 (2020).

  21. H. Arjun and P. Chaudhuri, J. Phys.: Condens. Matter 32, 414001 (2020).

  22. P. Dillmann, G. Maret, and P. Keim, J. Phys.: Condens. Matter 24, 464118 (2012).

  23. K. Zahn and G. Maret, Phys. Rev. Lett. 85, 3656 (2000).

    Article  ADS  Google Scholar 

  24. S. A. Khrapak, Phys. Rev. Res. 2, 012040(R) (2020).

  25. W. D. Pineros, M. Baldea, and Th. M. Truskett, J. Chem. Phys. 145, 054901 (2016).

  26. Z. Krebs, A. B. Roitman, L. M. Nowack, C. Liepold, B. Lin, and S. A. Rice, J. Chem. Phys. 149, 034503 (2018).

  27. V. V. Hoang and N. T. Hieu, J. Phys. Chem. C 120, 18340 (2016).

    Article  Google Scholar 

  28. S. Khrapak, J. Chem. Phys. 148, 146101 (2018).

  29. H. Schmidle, C. K. Hall, O. D. Velev, and S. H. L. Klapp, Soft Matter 8, 1521 (2012).

    Article  ADS  Google Scholar 

  30. N. Shankaraiah, S. Sengupta, and G. I. Menon, J. Phys.: Condens. Matter 32, 184003 (2020).

  31. J. A. Anderson, J. Antonaglia, J. A. Millan, M. Engel, and S. C. Glotzer, Phys. Rev. X 7, 021001 (2017).

  32. L. A. Padilla, A. A. Leon-Islas, J. Funkhouser, J. C. Armas-Perez, and A. Ramirez-Hernandez, J. Chem. Phys. 155, 214901 (2021).

  33. L. Nowack and S. A. Rice, J. Chem. Phys. 151, 244504 (2019).

  34. W. D. Pineros, M. Baldea, and T. M. Truskett, J. Chem. Phys. 145, 054901 (2016).

  35. A. Jain, J. R. Errington, and T. M. Truskett, Phys. Rev. X 4, 031049 (2014).

  36. Y. Chen, X. Tan, H. Wang, Z. Zhang, J. M. Kosterlitz, and X. S. Ling, Phys. Rev. Lett. 127, 018004 (2021).

  37. D. S. Cardoso, V. F. Hernandes, T. P. O. Nogueira, and J. R. Bordin, Phys. A (Amsterdam, Neth.) 566, 125628 (2021).

  38. G. Campos-Villalobos, M. Dijkstra, and A. Patti, Phys. Rev. Lett. 126, 158001 (2021).

  39. A. M. Almudallal, S. V. Buldyrev, and I. Saika-Voivod, J. Chem. Phys. 137, 034507 (2012).

  40. S. A. Rice, Chem. Phys. Lett. 479, 1 (2009).

    Article  ADS  Google Scholar 

  41. P. Keim, G. Maret, and H. H. von Grunberg, Phys. Rev. E 75, 031402 (2007).

  42. P. Keim, G. Maret, U. Herz, and H. H. von Grunberg, Phys. Rev. Lett. 92, 215504 (2004).

  43. S. Deutschlander et al., Phys. Rev. Lett. 111, 098301 (2013).

  44. T. Horn et al., Phys. Rev. E 88, 062305 (2013).

  45. J. Zanghellini, P. Keim, and H. H. von Grunberg, J. Phys.: Condens. Matter 17, S3579 (2005).

    ADS  Google Scholar 

  46. S. Deutschlander, A. M. Puertas, G. Maret, and P. Keim, Phys. Rev. Lett. 113, 127801 (2014).

  47. E. V. Vasilieva, O. F. Petrov, and M. M. Vasiliev, Sci. Rep. 11, 523 (2021).

    Article  Google Scholar 

  48. O. S. Vaulina and X. G. Kossa, Phys. Lett. A 378, 3475 (2014).

    Article  ADS  Google Scholar 

  49. X. S. Koss and O. S. Vaulina, J. Phys.: Conf. Ser. 653, 012103 (2015).

  50. X. Qi, Y. Chen, Y. Jin, and Y.-H. Yang, J. Korean Phys. Soc. 49, 1682 (2006).

    Google Scholar 

  51. B. J. Alder and A. W. Wainwright, J. Chem. Phys. 27, 1208 (1957).

    Article  ADS  Google Scholar 

  52. B. J. Alder and A. W. Wainwright, J. Chem. Phys. 33, 1439 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  53. B. J. Alder and A. W. Wainwright, J. Chem. Phys. 31, 459 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  54. B. J. Alder and A. W. Wainwright, Phys. Rev. 127, 359 (1962).

    Article  ADS  Google Scholar 

  55. J. A. Zollweg and G. V. Chester, Phys. Rev. B 46, 11186 (1992).

    Article  ADS  Google Scholar 

  56. H. Weber and D. Marx, Europhys. Lett. 27, 593 (1994).

    Article  ADS  Google Scholar 

  57. M. P. Allen, D. Frenkel, and W. Gignac, J. Chem. Phys. 78, 4206 (1983).

    Article  ADS  Google Scholar 

  58. A. D. Novaco and P. A. Shea, Phys. Rev. B 26, 284 (1982).

    Article  ADS  Google Scholar 

  59. F. F. Abraham, Phys. Rev. Lett. 44, 463 (1980).

    Article  ADS  Google Scholar 

  60. J. A. Barker, D. Hendersen, and F. F. Abraham, Phys. A (Amsterdam, Neth.) 106, 226 (1981).

  61. S. Toxvaerd, Phys. Rev. Lett. 44, 1002 (1980).

    Article  ADS  Google Scholar 

  62. J. Q. Broughton, G. H. Gilmer, and J. D. Weeks, Phys. Rev. B 25, 4651 (1982).

    Article  ADS  Google Scholar 

  63. H. Weber, D. Marx, and K. Binder, Phys. Rev. B 51, 14636 (1995).

    Article  ADS  Google Scholar 

  64. C. H. Mak, Phys. Rev. E 73, 065104 (2006).

  65. J. J. Alonso and J. F. Fernandez, Phys. Rev. E 59, 2659 (1999).

    Article  ADS  Google Scholar 

  66. J. Lee and K. J. Strandburg, Phys. Rev. B 46, 11190 (1992).

    Article  ADS  Google Scholar 

  67. J. F. Fernandez, J. J. Alonso, and J. Stankiewicz, Phys. Rev. Lett. 75, 3477 (1995).

    Article  ADS  Google Scholar 

  68. K. Binder, S. Sengupta, and P. Nielaba, J. Phys.: Condens. Matter 14, 2323 (2002).

    ADS  Google Scholar 

  69. W. Qi, A. P. Gantapara, and M. Dijkstra, Soft Matter 10, 5449 (2014).

    Article  ADS  Google Scholar 

  70. J. Russo and N. B. Wilding, Phys. Rev. Lett. 119, 115702 (2017).

  71. A. L. Thorneywork, J. L. Abbott, D. G. A. L. Aarts, and R. P. A. T. Dullens, Phys. Rev. Lett. 118, 158001 (2017).

  72. P. S. Ruiz, Q.-L. Lei, and R. Ni, Commun. Phys. 2, 70 (2019).

    Article  Google Scholar 

  73. X. Xu and S. A. Rice, Phys. Rev. E 78, 011602 (2008).

  74. D. Abutbul and D. Podolsky, Phys. Rev. Lett. 128, 255501 (2022).

  75. E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011).

  76. M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard, and W. Krauth, Phys. Rev. E 87, 042134 (2013).

  77. J. Lee and J. M. Kosterlitz, Phys. Rev. B 43, 3265 (1991).

    Article  ADS  Google Scholar 

  78. D. E. Dudalov, Yu. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, J. Phys.: Conf. Ser. 510, 012016 (2014).

  79. D. E. Dudalov, Yu. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, J. Chem. Phys. 141, 18C522 (2014).

  80. D. E. Dudalov, Yu. D. Fomin, E.N.Tsiok, and V. N. Ryzhov, Soft Matter 10, 4966 (2014).

    Article  ADS  Google Scholar 

  81. E.N.Tsiok, D. E. Dudalov, Yu. D. Fomin, and V. N. Ryzhov, Phys. Rev. E 92, 032110 (2015).

  82. N. P. Kryuchkov, S. O. Yurchenko, Yu. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, Soft Matter 14, 2152 (2018).

    Article  ADS  Google Scholar 

  83. Y. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, Phys. A (Amsterdam, Neth.) 527, 121401 (2019).

  84. A. Mendoza-Coto, V. Mattiello, R. Cenci, N. Defenu, and L. Nicolao, arXiv: 2209.02802v1 (2022).

  85. S. Prestipino, F. Saija, and P. V. Giaquinta, Phys. Rev. Lett. 106, 235701 (2011).

  86. S. Prestipino and F. Saija, J. Chem. Phys. 141, 184502 (2014).

  87. Yu. D. Fomin, V. N. Ryzhov, and N. V. Gribova, Phys. Rev. E 81, 061201 (2010).

  88. J. C. Pamies, A. Cacciuto, and D. Frenkel, J. Chem. Phys. 131, 044514 (2009).

  89. B. K. Mandal and P. Mishra, Mol. Phys. 118, e1706774 (2020).

  90. W. L. Miller and A. Cacciuto, Soft Matter 7, 7552 (2011).

    Article  ADS  Google Scholar 

  91. M. Zu, J. Liu, H. Tong, and N. Xu, Phys. Rev. Lett. 117, 085702 (2016).

  92. T. Terao, J. Chem. Phys. 139, 134501 (2013).

  93. Yu. D. Fomin, E. A. Gaiduk, E. N. Tsiok and V. N. Ryzhov, Mol. Phys. 116, 3258 (2018).

    Article  ADS  Google Scholar 

  94. E. N. Tsiok, Yu. D. Fomin, E. A. Gaiduk, and V. N. Ryzhov, Phys. Rev. E 103, 062612 (2021).

  95. E. N. Tsiok, E. A. Gaiduk, Yu. D. Fomin, and V. N. Ryzhov, Soft Matter 16, 3962 (2020).

    Article  ADS  Google Scholar 

  96. E. A. Gaiduk, Y. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, Phys. Rev. E 106, 024602 (2022).

  97. I. Roy, S. Dutta, A. N. R. Choudhury, S. Basistha, I. Maccari, S. Mandal, J. Jesudasan, V. Bagwe, C. Castellani, L. Benfatto, and P. Raychaudhuri, Phys. Rev. Lett. 122, 047001 (2019).

  98. M. Franz and S. Teitel, Phys. Rev. B 51, 6551 (1995).

    Article  ADS  Google Scholar 

  99. V. N. Ryzhov and E. E. Tareeva, J. Exp. Theor. Phys. 81, 1115 (1995).

    ADS  Google Scholar 

  100. S. C. Ganguli, H. Singh, I. Roy, V. Bagwe, D. Bala, A. Thamizhavel, and P. Raychaudhuri, Phys. Rev. B 93, 144503 (2016).

  101. I. Guillamon, H. Suderow, A. Fernandez-Pacheco, J. Sese, R. Cordoba, J. M. de Teresa, M. R. Ibarra, and S. Vieira, Nat. Phys. 5, 651 (2009).

    Article  Google Scholar 

  102. M. Gabay and A. Kapitulnik, Phys. Rev. Lett. 71, 2138 (1993).

    Article  ADS  Google Scholar 

  103. M. A. Altvater, N. Tilak, S. Rao, G. Li, C.-J. Won, S.‑W. Cheong, and E. Y. Andrei, Nano Lett. 21, 6132 (2021).

    Article  ADS  Google Scholar 

  104. D. A. Garanin and E. M. Chudnovsky, Phys. Rev. B 107, 014419 (2023).

  105. P. Huang, T. Schonenberger, M. Cantoni, L. Heinen, A. Magrez, A. Rosch, F. Carbone, and H. M. Ronnow, Nat. Nanotechnol. 15, 761 (2020).

    Article  ADS  Google Scholar 

  106. A. R. C. McCray, Y. Li, R. Basnet, K. Pandey, J. Hu, J. Phelan, X. Ma, A. K. Petford-Long, and C. Phatak, Nano Lett. 22, 7804 (2022).

    Article  ADS  Google Scholar 

  107. J. Zubeltzu, F. Corsetti, M. V. Fernandez-Serra, and E. Artacho, Phys. Rev. E 93, 062137 (2016).

  108. V. Kapil, C. Schran, A. Zen, J. Chen, C. J. Pickard, and A. Michaelides, Nature (London, U.K.) 609, 512 (2022).

    Article  ADS  Google Scholar 

  109. T. Mithun, S. C. Ganguli, P. Raychaudhuri, and B. Dey, Europhys. Lett. 123, 20004 (2018).

    Article  ADS  Google Scholar 

  110. D. Frenkel and J. P. McTague, Phys. Rev. Lett. 42, 1632 (1979).

    Article  ADS  Google Scholar 

  111. S. Toxvaerd, J. Chem. Phys. 69, 4750 (1978).

    Article  ADS  Google Scholar 

  112. F. F. Abraham, Phys. Rev. Lett. 44, 463 (1980).

    Article  ADS  Google Scholar 

  113. J. M. Phillips, L. W. Bruch, and R. D. Murphy, J. Chem. Phys. 75, 5097 (1981).

    Article  ADS  Google Scholar 

  114. A. F. Bakker, C. Bruin, and H. J. Hilhorst, Phys. Rev. Lett. 52, 449 (1984).

    Article  ADS  Google Scholar 

  115. K. J. Strandburg, J. A. Zollweg,and G. V. Chester, Phys. Rev. B 30, 2755 (1984).

    Article  ADS  Google Scholar 

  116. A. Hajibabaei and K. S. Kim, Phys. Rev. E 99, 022145 (2019).

  117. Y.-W. Li and M. P. Ciamarra, Phys. Rev. E 102, 062101 (2020).

  118. Y.-W. Li and M. P. Ciamarra, Phys. Rev. Lett. 124, 218002 (2020).

  119. H. Zhang, S. Peng, L. Mao, X. Zhou, J. Liang, C. Wan, J. Zheng, and X. Ju, Phys. Rev. E 89, 062410 (2014).

  120. K. Wierschem and E. Manousakis, Phys. Rev. B 83, 214108 (2011).

  121. E. N. Tsiok, Y. D. Fomin, E. A. Gaiduk, E. E. Tareyeva, V. N. Ryzhov, P. A. Libet, N. A. Dmitryuk, N. P. Kryuchkov, and S. O. Yurchenko, J. Chem. Phys. 156, 114703 (2022).

  122. A. Hajibabaei and K. S. Kim, Phys. Rev. E 99, 022145 (2019).

  123. S. S. Khali, D. Chakraborty, and D. Chaudhuri, Soft Matter 17, 3473 (2021).

    Article  ADS  Google Scholar 

  124. A. Z. Patashinskii, V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1982; Pergamon, Oxford, 1979).

  125. A. P. Young, J. Phys. C 11, L453 (1978).

    Article  ADS  Google Scholar 

  126. J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).

    Article  ADS  Google Scholar 

  127. T. Ohta, Prog. Theor. Phys. 60, 968 (1978).

    Article  ADS  Google Scholar 

  128. P. B. Wiegman, J. Phys. C 11, 1583 (1978).

    Article  ADS  Google Scholar 

  129. D. J. Amit, Y. Y. Goldschmidt, and G. Grinstein, J. Phys. A 13, 585 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  130. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  131. I. Herbut, A Modern Approach to Critical Phenomena (Cambridge Univ. Press, Cambridge, 2007).

    Book  MATH  Google Scholar 

  132. D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).

    Article  ADS  Google Scholar 

  133. V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia, Phys. Rev. Lett. 40, 576 (1978).

    Article  Google Scholar 

  134. B. A. Huberman, R. J. Myerson, and S. Doniach, Phys. Rev. Lett. 40, 780 (1978).

    Article  ADS  Google Scholar 

  135. D. J. Bishop and J. D. Reppy, Phys. Rev. Lett. 40, 1727 (1978).

    Article  ADS  Google Scholar 

  136. I. Rudnik, Phys. Rev. Lett. 40, 1454 (1978).

    Article  ADS  Google Scholar 

  137. J. G. Dash, Phys. Rev. Lett. 41, 1178 (1978).

    Article  ADS  Google Scholar 

  138. S. Tung, G. Lamporesi, D. Lobser, L. Xia, and E. A. Cornel, Phys. Rev. Lett. 105, 230408 (2010).

  139. C.-L. Huang, X. Zhang, N. Gemelke, and C. Chin, Nature (London, U.K.) 470, 236 (2011).

    Article  ADS  Google Scholar 

  140. P. Clade, C. Ryu, A. Ramanathan, K. Helmerson, and W. D. Phillips, Phys. Rev. Lett. 102, 170401 (2009).

  141. S. P. Rath, T. Yefsah, K. J. Gunter, M. M. Cheneau, R. Desbuquois, M. Holzmann, W. Krauth, and J. Dalibard, Phys. Rev. A 82, 013609 (2010).

  142. M. R. Beasley, J. E. Mooij and T. P. Orlando, Phys. Rev. Lett. 42, 1165 (1979).

    Article  ADS  Google Scholar 

  143. J. Pearl, Appl. Phys. Lett. 5, 65 (1964).

    Article  ADS  Google Scholar 

  144. D. Y. Irz, V. N. Ryzhov, and E. E. Tareyeva, Phys. Lett. A 207, 374 (1995).

    Article  ADS  Google Scholar 

  145. V. N. Ryzhov and E. E. Tareyeva, Phys. Rev. B 48, 12907 (1993).

    Article  ADS  Google Scholar 

  146. V. N. Ryzhov and E. E. Tareyeva, Phys. Rev. B 49, 6162 (1994).

    Article  ADS  Google Scholar 

  147. D. Y. Irz, V. N. Ryzhov, and E. E. Tareyeva, Phys. Rev. B 54, 3051 (1996).

    Article  ADS  Google Scholar 

  148. V. N. Ryzhov and E. E. Tareeva, Theor. Math. Phys. 96, 1062 (1993).

    Article  Google Scholar 

  149. D. Yu. Irz, V. N. Ryzhov, and E. E. Tareeva, Theor. Math. Phys. 104, 1035 (1995).

    Article  Google Scholar 

  150. D. Yu. Irz, V. N. Ryzhov, and E. E. Tareeva, Theor. Math. Phys. 107, 499 (1996).

    Article  Google Scholar 

  151. J. M. Hsu and A. Kapitulnik, Phys. Rev. B 45, 4819 (1992).

    Article  ADS  Google Scholar 

  152. I. Guillamon, R. Cordoba, J. Sese, et al., Nat. Phys. 10, 851 (2014).

    Article  Google Scholar 

  153. A. F. Hebard and A. T. Fiory, Phys. Rev. Lett. 50, 1603 (1983).

    Article  ADS  Google Scholar 

  154. P. G. Baity, Xiaoyan Shi, Zhenzhong Shi, L. Benfatto, and D. Popovic, Phys. Rev. B 93, 024519 (2016).

  155. L. Benfatto, C. Castellani, and T. Giamarchi, Phys. Rev. B 77, 100506 (R) (2008).

  156. Yen-Hsiang Lin, J. Nelson, and A. M. Goldman, Phys. Rev. Lett. 109, 017002 (2012).

  157. F. Leoni and G. Franzese, J. Chem. Phys. 141, 174501 (2014).

  158. S. A. Rice, Chem. Phys. Lett. 479, 1 (2009).

    Article  ADS  Google Scholar 

  159. Z. Krebs, A. B. Roitman, L. M. Nowack, C. Liepold, B. Lin, and S. A. Rice, J. Chem. Phys. 149, 034503 (2018).

  160. E. N. Tsiok, Yu. D. Fomin, and V. N. Ryzhov, Phys. A (Amsterdam, Neth.) 550, 124521 (2020).

  161. L. A. Padilla and A. Ramirez-Hernandez, J. Phys.: Condens. Matter 32, 275103 (2020).

  162. D. S. Cardoso, V. F. Hernandes, P. T. O. Nogueira, and J. R. Bordin, Phys. A (Amsterdam, Neth.) 566, 125628 (2021).

  163. F. Martelli, H.-Y. Ko, C. Calero, and G. Franzese, Front. Phys. 13, 136801 (2018).

  164. A. Jain, J. R. Errington, and Th. M. Truskett, Phys. Rev. X 4, 031049 (2014).

  165. E. Marcotte, F. H. Stillinger, and S. Torquato, J. Chem. Phys. 134, 164105 (2011).

  166. W. D. Pineros, M. Baldea, and T. M. Truskett, J. Chem. Phys. 145, 054901 (2016).

  167. M. Engel and H.-R. Trebin, Phys. Rev. Lett. 98, 225505 (2007).

  168. T. Dotera, T. Oshiro, and P. Ziherl, Nature (London, U.K.) 506, 208 (2014).

    Article  ADS  Google Scholar 

  169. H. Pattabhiraman and M. Dijkstra, J. Chem. Phys. 146, 114901 (2017).

  170. S. C. Kapfer and W. Krauth, Phys. Rev. Lett. 114, 035702 (2015).

  171. S. T. Chui, Phys. Rev. B 28, 178 (1983).

    Article  ADS  Google Scholar 

  172. K. J. Strandburg, Phys. Rev. B 34, 3536 (1986).

    Article  ADS  Google Scholar 

  173. V. N. Ryzhov, Sov. Phys. JETP 73, 899 (1991).

    ADS  Google Scholar 

  174. V. N. Ryzhov, Theor. Math. Phys. 88, 990 (1991).

    Article  Google Scholar 

  175. V. N. Ryzhov and E. E. Tareyeva, Phys. Lett. A 75, 88 (1979).

    Article  ADS  Google Scholar 

  176. V. N. Ryzhov and E. E. Tareyeva, Theor. Math. Phys. 48, 835 (1981).

    Article  Google Scholar 

  177. V. N. Ryzhov and E. E. Tareyeva, Phys. Rev. B 51, 8789 (1995).

    Article  ADS  Google Scholar 

  178. V. N. Ryzhov and E. E. Tareyeva, Phys. A (Amsterdam, Neth.) 314, 396 (2002).

  179. E. S. Chumakov, Y. D. Fomin, E. L. Shangina, E. E. Tareyeva, E. N. Tsiok, and V. N. Ryzhov, Phys. A (Amsterdam, Neth.) 432, 279 (2015).

  180. V. N. Ryzhov and E. E. Tareyeva, Theor. Math. Phys. 200, 1053 (2019).

    Article  Google Scholar 

  181. V. N. Ryzhov, Theor. Math. Phys. 55, 399 (1983).

    Article  Google Scholar 

  182. L. M. Pomirchi, V. N. Ryzhov, and E. E. Tareyeva, Theor. Math. Phys. 130, 101 (2002).

    Article  Google Scholar 

  183. V. N. Ryzhov and E. E. Tareyeva, Phys. A (Amsterdam, Neth.) 314, 396 (2002).

  184. E. P. Bernard, W. Krauth, and D. B. Wilson, Phys. Rev. E 80, 056704 (2009).

  185. W. Qi, A. P. Gantapara, and M. Dijkstra, Soft Matter 10, 5449 (2014).

    Article  ADS  Google Scholar 

  186. W. K. Qi, S. M. Qin, X. Y. Zhao, and Chen Yong, J. Phys.: Condens. Matter 20, 245102 (2008).

  187. W. Qi and M. Dijkstra, Soft Matter 11, 2852 (2015).

    Article  ADS  Google Scholar 

  188. E. N. Tsiok, Y. D. Fomin, and V. N. Ryzhov, Phys. A (Amsterdam, Neth.) 490, 819 (2018).

  189. E. A. Gaiduk, Y. D. Fomin, E. N. Tsiok, and V. N. Ryzhov, Mol. Phys. 117, 2910 (2019).

    Article  ADS  Google Scholar 

  190. J. E. Mayer and W. W. Wood, J. Chem. Phys. 42, 4268 (1965).

    Article  ADS  Google Scholar 

  191. D. R. Nelson, Phys. Rev. B 27, 2902 (1983).

    Article  ADS  Google Scholar 

  192. S. Sachdev and D. R. Nelson, J. Phys. C 17, 5473 (1984).

    Article  ADS  Google Scholar 

  193. A. B. Dzyubenko and Y. E. Lozovik, Sov. Phys. JETP 75, 149 (1992).

    ADS  Google Scholar 

  194. M. Cha and H. A. Fertig, Phys. Rev. Lett. 74, 4867 (1995).

    Article  ADS  Google Scholar 

  195. S. Herrera-Velarde and H. H. von Grunberg, Soft Matter 5, 391 (2009).

    Article  ADS  Google Scholar 

  196. http://lammps.sandia.gov/;

  197. S. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  198. J. Q. Broughton, G. H. Gilmer, and J. D. Weeks, Phys. Rev. B 25, 4651 (1982).

    Article  ADS  Google Scholar 

  199. S. Sengupta, P. Nielaba, and K. Binder, Phys. Rev. E 61, 6294 (2000).

    Article  ADS  Google Scholar 

  200. S. Sengupta, P. Nielaba, M. Rao, and K. Binder, Phys. Rev. E 61, 1072 (2000).

    Article  ADS  Google Scholar 

  201. D. S. Fisher, B. I. Halperin, and R. Morf, Phys. Rev. B 20, 4692 (1979).

    Article  ADS  Google Scholar 

  202. K. Binder, Z. Phys. B 43, 119 (1981).

    Article  ADS  Google Scholar 

  203. K. Binder, Phys. Rev. Lett. 47, 693 (1981).

    Article  ADS  Google Scholar 

  204. M. S. S. Challa, D. P. Landau, and K. Binder, Phys. Rev. B 34, 1841 (1986).

    Article  ADS  Google Scholar 

  205. K. Binder, Ferroelectrics 73, 43 (1987).

    Article  ADS  Google Scholar 

  206. M. S. S. Challa and D. P. Landau, Phys. Rev. B 33, 437 (1986).

    Article  ADS  Google Scholar 

  207. E. Rastelli, S. Regin, and A. Tassi, J. Magn. Magn. Mater. 272–276, 997 (2004).

    Article  ADS  Google Scholar 

  208. A. K. Murtazaev and A. B. Babaev, J. Magn. Magn. Mater. 324, 3870 (2012).

    Article  ADS  Google Scholar 

  209. A. B. Babaev, M. A. Magomedov, A. K. Murtazaev, F. A. Kassan-Ogly, and A. I. Proshkin, J. Exp. Theor. Phys. 122, 310 (2016).

    Article  ADS  Google Scholar 

  210. A. K. Murtazaev and A. B. Babaev, Mater. Lett. 258, 126771 (2020).

  211. K. S. Murtazaev, A. K. Murtazaev, M. K. Ramazanov, M. A. Magomedov, and A. A. Murtazaeva, Low Temp. Phys. 47, 515 (2021).

    Google Scholar 

  212. A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, Phys. A (Amsterdam, Neth.) 545, 123548 (2020).

  213. A. K. Murtazaev and A. B. Babaev, J. Exp. Theor. Phys. 132, 917 (2021).

    Article  ADS  Google Scholar 

  214. K. Vollmayr, J. D. Reger, M. Scheucher, and K. Binder, Z. Phys. B 91, 113 (1993).

    Article  ADS  Google Scholar 

  215. K. Eichhorn and K. Binder, J. Phys.: Condens. Matter 8, 5209 (1996).

    ADS  Google Scholar 

  216. C. Borgs and R. Kotecky, J. Stat. Phys. 61, 79 (1990).

    Article  ADS  Google Scholar 

  217. C. Borgs and R. Kotecky, Phys. Rev. Lett. 68, 1738 (1992).

    Article  ADS  Google Scholar 

  218. Yu. E. Lozovik and V. M. Farztdinov, Solid State Commun. 54, 725 (1985).

    Article  ADS  Google Scholar 

  219. Y. E. Lozovik, V. M. Farztdinov, B. Abdullaev, and S. A. Kucherov, Phys. Lett. A 112, 61 (1985).

    Article  ADS  Google Scholar 

  220. V. Bedanov, G. Gadiyak, and Y. E. Lozovik, Phys. Lett. A 109, 289 (1985).

    Article  ADS  Google Scholar 

  221. F. Lindemann, Z. Phys. 11, 609 (1910).

    Google Scholar 

  222. P. M. Platzman and H. Fukuyama, Phys. Rev. B 10, 3150 (1974).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V. V. Brazhkin and A. K. Murtazaev for their interest in the work and useful discussions of various aspects of the subject.

Funding

The work was supported by the Russian Science Foundation (grant no. 19-12-00092, https://rscf.ru/project/19-12-00092) and was carried out using the equipment of the Federal Collective Usage Center “Complex for Simulation and Data Processing for Mega-science Facilities” at the National Research Center ”Kurchatov Institute,” http://ckp.nrcki.ru, and the computing resources of the Joint Supercomputer Center of the Russian Academy of Sciences (JSCC RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Ryzhov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhov, V.N., Gaiduk, E.A., Tareeva, E.E. et al. Melting Scenarios of Two-Dimensional Systems: Possibilities of Computer Simulation. J. Exp. Theor. Phys. 137, 125–150 (2023). https://doi.org/10.1134/S1063776123070129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123070129

Navigation