Skip to main content
Log in

Analysis of the Process e+eH0A0 in IHDM in the Presence of a Linearly Polarized Laser Field

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In this research paper, we consider the process of neutral Higgs production from e+e annihilation in Inert Higgs Doublet Model (IHDM) in the absence and presence of an external field. The latter is assumed to be a plane and monochromatic wave with linear polarization. In the theoretical framework, we present the analytic calculation of the lowest order differential cross section by using the scattering matrix approach and Dirac–Volkov formalism for charged incident particles. The total cross section is computed by performing a numerical integration of the differential cross section over the solid angle. The results obtained are analyzed and discussed for different centre of mass energies and laser parameters. We found that inserting a laser wave with linear polarization is a suitable mechanism to enhance the total cross section of the process. Indeed, the probability of the process to occur increases with the presence of a linearly polarized laser field, especially with low frequency and high strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. T. H. Maiman, Nature (London, U.K.) 187, 493 (1960).

    Article  ADS  Google Scholar 

  2. D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985);

    Article  ADS  Google Scholar 

  3. Opt. Commun. 56, 219(E) (1985).

  4. H. Abramowicz, U. Acosta, M. Altarelli, et al., Eur. Phys. J. Spec. Top. 230, 2445 (2021).

    Article  Google Scholar 

  5. P. Francken and C. J. Joachain, J. Opt. Soc. Am. B 7, 554 (1990).

    Article  ADS  Google Scholar 

  6. P. Francken, Y. Attaourti, and C. J. Joachain, Phys. Rev. A 38, 1785 (1988).

    Article  ADS  Google Scholar 

  7. A. Cionga, F. Ehlotzky, and G. Zloh, Phys. Rev. A 64, 043401 (2001).

  8. M. Bouzidi, A. Makhoute, and M. N. Hounkonnou, Eur. Phys. J. D 5, 159 (1999).

    Article  ADS  Google Scholar 

  9. P. Francken and C. J. Joachain, J. Opt. Soc. Am. B 7, 554 (1990).

    Article  ADS  Google Scholar 

  10. S. P. Roshchupkin, Laser. Phys 6, 837 (1996).

    Google Scholar 

  11. J. Ou Aali, M. Ouali, M. Ouhammou, et al., Eur. Phys. J. Plus 137, 632 (2022).

    Article  Google Scholar 

  12. S. P. Roshchupkin, A. Dubov, and V. V. Dubov, Laser Phys. Lett. 18, 045301 (2021).

  13. A. V. Andreev, R. V. Volkov, V. M. Gordienko, et al., J. Exp. Theor. Phys. 91, 1163 (2000).

    Article  ADS  Google Scholar 

  14. N. B. Narozhny and M. S. Fofanov, J. Exp. Theor. Phys. 90, 415 (2000).

    Article  ADS  Google Scholar 

  15. Y. Attaourti, B. Manaut, and A. Makhoute, Phys. Rev. A 69, 063407 (2004).

  16. H. M. Castañeda Cortés, C. Müller, C. H. Keitel, and A. Palffy, Phys. Lett. B 723, 401 (2013).

    Article  ADS  Google Scholar 

  17. A. di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel, Rev. Mod. Phys. 84, 1177 (2012).

    Article  ADS  Google Scholar 

  18. B. Manaut, Y. Attaourti, S. Taj, and S. Elhandi, Phys. Scr. 80, 025304 (2009).

  19. M. Ouali, M. Ouhammou, Y. Mekaoui, S. Taj, and B. Manaut, Chin. J. Phys. 77, 1182 (2022).

    Article  Google Scholar 

  20. M. Ouali et al., Laser Phys. 32, 106002 (2022).

  21. M. Ouali et al., Laser Phys. 33, 016002 (2023).

  22. M. Ouhammou et al., Laser Phys. Lett. 18, 076002 (2021).

  23. S. J. Müller, Ch. H. Keitel, and C. Müller, Phys. Rev. D 90, 094008 (2014).

  24. S. J. Müller, Ch. H. Keitel, and C. Müller, Phys. Lett. B 730, 161 (2014).

    Article  ADS  Google Scholar 

  25. M. Ouhammou, M. Ouali, S. Taj, and B. Manaut, Chin. J. Phys. 77, 826 (2022).

    Article  Google Scholar 

  26. M. Ouali, M. Ouhammou, S. Taj, R. Benbrik, and B. Manaut, Phys. Lett. B 823, 136761 (2021).

  27. M. Ouhammou, M. Ouali, S. Taj, R. Benbrik, B. Manaut, and E. Hrour, Laser Phys. Lett. 19, 116002 (2022).

  28. M. Baouahi, I. Dahiri, M. Ouali, B. Manaut, R. Benbrik, and S. Taj, Europhys. Lett. 138, 14003 (2022).

    Article  ADS  Google Scholar 

  29. M. Jakha et al., Laser. Phys. Lett. 18, 016002 (2021).

  30. S. Mouslih, M. Jakha, S. Taj, B. Manaut, and E. Siher, Phys. Rev. D 102, 073006 (2020).

  31. M. Baouahi, M. Ouali, M. Jakha, S. Mouslih, Y. Attaourti, B. Manaut, S. Taj, and R. Benbrik, Laser Phys. Lett. 18, 106001 (2021).

  32. H. Abouabid, A. Arhrib, R. Benbrik, et al., J. High Energy Phys. 2021, 100 (2021).

    Article  Google Scholar 

  33. W. Greiner and B. Mueller, Gauge Theory of Weak Interactions, 3rd ed. (Springer, Berlin, 2000).

    Book  Google Scholar 

  34. D. M. Volkov, Z. Phys. 94, 250 (1935). https://doi.org/10.1007/BF01331022

    Article  ADS  Google Scholar 

  35. R. Mertig, M. Bohm, and A. Denner, Comput. Phys. Commun. 64, 345 (1991).

    Article  ADS  Google Scholar 

  36. V. Shtabovenko, R. Mertig, and F. Orellana, Comput. Phys. Commun. 207, 432 (2016).

    Article  ADS  Google Scholar 

  37. P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

  38. A. Belyaev, N. D. Christensen, and A. Pukhov, Comput. Phys. Commun. 184, 1729 (2013); arXiv: 1207.6082. https://doi.org/10.1016/j.cpc.2013.01.014

    Article  ADS  Google Scholar 

  39. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, J. High Energy Phys., No. 07, 079 (2014). https://doi.org/10.1007/JHEP07(2014)079

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Ouali or B. Manaut.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

DATA AVAILABILITY STATEMENT

No datasets were generated or analyzed during the current study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouhammou, M., Ouali, M., Taj, S. et al. Analysis of the Process e+eH0A0 in IHDM in the Presence of a Linearly Polarized Laser Field. J. Exp. Theor. Phys. 137, 71–79 (2023). https://doi.org/10.1134/S1063776123070063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123070063

Navigation