Skip to main content
Log in

Classification and Dynamics of Ultralean Hydrogen–Air Flames in Horizontal Cylindrical Hele–Shaw Cells

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Using the successively inverted projection method, we studied the dynamics of ultralean hydrogen–air flames propagating freely in a horizontal cylindrical Hele–Shaw cell. To quantify the two revealed characteristics of the flame dynamics—the dependence of the average flame velocities on time and the dependence of the initial flame velocity on the stoichiometry of the initial hydrogen–air mixture—we proposed time and stoichiometric scaling relations. The first relation approximates the dependence of the path of the flame front in hydrogen–air mixtures with an initial hydrogen concentration exceeding a certain critical value. The second relation approximates the dependencies of the initial flame front velocities on the hydrogen concentration. The general relationships for topologically different types of ultralean hydrogen–air flames can be interpreted as additional evidence of the presence of a general mechanism for the transition from discrete fronts of isolated drifting ball flames to a quasi-continuous deflagration flame front through a cascade of bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. von Humboldt and J. F. Gay-Lussac, J. Phys. 60, 38 (1805).

    Google Scholar 

  2. H. F. Coward and F. Brinsley, J. Chem. Soc. Trans. 105, 1859 (1914).

    Article  Google Scholar 

  3. D. E. Mallard and H. L. le Chatelier, Ann. Mines 4, 296 (1883).

    Google Scholar 

  4. H. Bunte, Ber. Deutsch. Chem. Gesellsch. 31, 5 (1898).

    Article  Google Scholar 

  5. P. Eitner, Doctoral Dissertation (München, 1902).

  6. G. Bohm and K. Clusius, Z. Naturforsch. 3a, 386 (1948).

  7. P. D. Ronney, Combust. Flame 82, 1 (1990).

    Article  Google Scholar 

  8. P. D. Ronney, K. N. Whaling, A. Abbud-Madrid, et al., AIAA J. 32, 569 (1994).

    Article  ADS  Google Scholar 

  9. Ya. B. Zel’dovich, Theory of Combustion and Detonation of Gases (Akad. Nauk SSSR, Moscow, 1944; Princeton Univ. Press, Princeton, 1992).

  10. P. D. Ronney, Proc. Combust. Inst. 27, 2485 (1998).

    Article  Google Scholar 

  11. K. Maruta, M. Yoshida, Y. Ju, et al., Proc. Combust. Inst. 26, 1283 (1996).

    Article  Google Scholar 

  12. R. Fursenko, S. Minaev, H. Nakamura, et al., Proc. Combust. Inst. 34, 981 (2013).

    Article  Google Scholar 

  13. Y. L. Shoshin and L. P. H. de Goey, Exp. Therm. Fluid Sci. 34, 373 (2010).

    Article  Google Scholar 

  14. Y. Shoshin, J. van Oijen, A. Sepman, et al., Proc. Combust. Inst. 33, 1211 (2011).

    Article  Google Scholar 

  15. F. E. Hernández-Pérez, B. Oostenrijk, Y. Shoshin, et al., Formation, Combust. Flame 162, 932 (2015).

    Article  Google Scholar 

  16. G. Joulin and G. I. Sivashinsky, Combust. Sci. Technol. 98, 1 (1994).

    Article  Google Scholar 

  17. J. Sharif, M. Abid, and P. D. Ronney, in Proceedings of the Spring Technical Meeting, US Sect. of Combustion Institute, March 15–17, 1999, p. 352.

  18. J. Wongwiwat, J. Gross, and P. D. Ronney, in Proceedings of the International Colloquium on the Dynamics of Explosions and Reactive Systems ICDERS-2015 (2015), p. 258.

    Google Scholar 

  19. C. Almarcha, J. Quinard, B. Denet, et al., Phys. Fluids 27, 9 (2015).

    Article  Google Scholar 

  20. E. Al Sarraf, C. Almarcha, B. Radisson, et al., in Proceedings of the 8th European Combustion Meeting (2017), p. 357.

  21. M. M. Alexeev, O. Yu. Semenov, and S. E. Yakush, Combust. Sci. Technol. 191, 1256 (2019).

    Article  Google Scholar 

  22. M. Kuznetsov and J. Grune, Int. J. Hydrogen Energy 44, 8727 (2019).

    Article  Google Scholar 

  23. F. Veiga-Lopez, M. Kuznetsov, J. Yanez, et al., in Proceedings of the 8th International Conference on Hydrogen Safety ICHS (2019), p. 193.

  24. F. Veiga-Lopez, M. Kuznetsov, D. Martínez-Ruiz, et al., Phys. Rev. Lett. 124, 174501 (2020).

  25. I. Brailovsky and G. I. Sivashinsky, Combust. Flame 110, 524 (1997).

    Article  Google Scholar 

  26. S. Minaev, L. Kagan, G. Joulin, et al., Combust. Theory Model. 5, 609 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  27. I. A. Kirillov, in Proceedings of the Technical Meeting on Hydrogen Management in Severe Accidents in VIC, Vienna, Austria, Sept. 25–28, 2018, p. 259.

  28. A. S. Melikhov, I. A. Kirillov, and V. P. Denisenko, RF Patent No. 2702422 C1 (2019).

  29. I. A. Kirillov, in Proceedings of the International Conference on Hydrogen Safety ICHS-2021 (2021), p. 134.

  30. V. P. Denisenko, S. S. Kingsep, I. A. Kirillov, et al., in Proceedings of the International Conference on Hydrogen Safety ICHS-2021 (2021), p. 128.

  31. A. Domínguez-González, D. Martínez-Ruiz, and M. Sánchez-Sanz, Proc. Combust. Inst. (2022).

  32. Yu. A. Gostintsev, A. G. Istratov, N. I. Kidin, and   V. E. Fortov, High Temp. 37, 603 (1999).

    Google Scholar 

  33. ImageJ, Image Processing and Analysis in Java, Version 1.53t. https://imagej.net/ij/.

  34. V. E. Borisov and S. E. Yakush, KIAM Preprint No. 004 (Keldysh Inst. Appl. Math., Moscow, 2019).

    Google Scholar 

  35. J. Huo, H. Su, L. Jiang, et al., Combust. Sci. Technol. 194, 2793 (2021).

    Article  Google Scholar 

  36. S. Diao, X. Wen, Z. Guo, et al., ACS Omega 7, 20118 (2022).

    Article  Google Scholar 

  37. G. Gu, J. Huang, W. Han, et al., Int. J. Hydrogen Energy 46, 12009 (2021).

    Article  Google Scholar 

  38. P. V. Moskalev, V. P. Denisenko, and I. A. Kirillov, in Proceedings of the International Colloquium on the Dynamics of Explosions and Reactive Systems ICDERS-2022 (2022), p. 221.

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Moskalev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskalev, P.V., Denisenko, V.P. & Kirillov, I.A. Classification and Dynamics of Ultralean Hydrogen–Air Flames in Horizontal Cylindrical Hele–Shaw Cells. J. Exp. Theor. Phys. 137, 104–113 (2023). https://doi.org/10.1134/S106377612307004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612307004X

Navigation