Skip to main content
Log in

Modeling of Double-Well Potentials for the Schrödinger Equation

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new method is proposed for determining level splitting Δ in a double-well 1D potential. Two “partner” functions (one symmetric Ψ+ and the other antisymmetric Ψ) are determined. From these functions, potentials V+(x) and V(x) and energies \(E_{ + }^{0}\) and \(E_{ - }^{1}\) corresponding to them are determined from the Schrödinger equation. A unique property of Ψ+ and Ψ is identity \(E_{ + }^{0}\) = \(E_{ - }^{1}\), which makes it possible to determine Δ from the perturbation theory in parameter V+(x) – V(x). For a double-well oscillator potential, the expression for the level splitting, which connects the instanton and single-well limits, is obtained. These results can be employed in the field theory, for which the possibility of obtaining instanton solutions from perturbation theory has been discussed more than once. A number of potentials are considered, for which the value of Δ can be determined without using the semiclassical approximation. Singular potentials of the funnel type are analyzed. The value of Δ determined in this study is compared with the results of numerical solution of the Schrödinger equation for the instanton potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. H. A. Kramers, Physica (Amsterdam, Neth.) 7, 284 (1940).

  2. S. Chandrasekar, Rev. Mod. Phys. 15, 1 (1943).

    Article  ADS  Google Scholar 

  3. W. Miller, J. Chem. Phys. 61, 1823 (1974).

    Article  ADS  Google Scholar 

  4. A. I. Vainshtein, V. I. Zakharov, V. A. Novikov, and M. A. Shifman, Sov. Phys. Usp. 25, 195 (1982).

    Article  ADS  Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Pergamon, New York, 1977; Fizmatlit, Moscow, 2001).

  6. R. Dutt, A. Khare, and U. Sukhatme, Phys. Lett. B 181, 295 (1986).

    Article  ADS  Google Scholar 

  7. J. W. Harald Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed. (World Sci., Singapore, 2012).

    Book  MATH  Google Scholar 

  8. R. Merzbacher, Quantum Mechanics (Wiley, New York, 1970).

    MATH  Google Scholar 

  9. M. Bernstein and L. S. Brown, Phys. Rev. Lett. 52, 1933 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Kumar, M. Ruiz-Altaba, and B. S. Thomas, Phys. Rev. Lett. 57, 2749 (1986).

    Article  ADS  Google Scholar 

  11. Wai-Yee Keung, E. Kovacs, and U. P. Sukhatme, Phys. Rev. Lett. 60, 41 (1988).

    ADS  Google Scholar 

  12. A. V. Turbiner, Lett. Math. Phys. 74, 169 (2005). https://doi.org/10.1007/s11005-005-0012-z

    Article  ADS  MathSciNet  Google Scholar 

  13. A. V. Turbiner, Int. J. Mod. Phys. A 25, 647 (2010). https://doi.org/10.1142/S0217751X10048937

    Article  ADS  Google Scholar 

  14. A. V. Turbiner and J. C. del Valle, Acta Polytech. 62, 208 (2022). https://doi.org/10.14311/AP.2022.62.0208

    Article  Google Scholar 

  15. Yu. I. Bogdanov, N. A. Bogdanova, D. V. Fastovets, and V. F. Lukichev, JETP Lett. 114, 354 (2021).

    Article  ADS  Google Scholar 

  16. A. M. Polyakov, Nucl. Phys. B 120, 429 (1977).

    Article  ADS  Google Scholar 

  17. J. Zinn-Justin, Nucl. Phys. B 192, 125 (1981);

    Article  ADS  Google Scholar 

  18. Nucl. Phys. B 218, 333 (1983).

  19. J. Zinn-Justin and U. D. Jentschura, Ann. Phys. 313, 197 (2004);

    Article  ADS  Google Scholar 

  20. Ann. Phys. 313, 269 (2004);

  21. Phys. Lett. B 596, 138 (2004).

  22. G. V. Dunne and M. Unsal, Phys. Rev. D 89, 105009 (2014).

  23. M. A. Escobar-Ruiz, E. Shuryak, and A. V. Turbiner, Phys. Rev. D 92, 025046 (2015);

  24. Phys. Rev. D 92, 089902(E) (2015).

  25. E. Shuryak and A. V. Turbiner, Phys. Rev. D 98, 105007 (2018).

  26. A. M. Dyugaev and P. D. Grigoriev, JETP Lett. 112, 101 (2020).

    Article  ADS  Google Scholar 

  27. A. V. Turbiner, JETP Lett. 30, 352 (1979).

    ADS  Google Scholar 

  28. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products (Nauka, Moscow, 1971; Academic, New York, 1980).

  29. I. V. Andreev, Chromodynamics and Hard Processes at High Energies (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  30. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Pergamon, Oxford, 1980; Fizmatlit, Moscow, 2005).

Download references

Funding

The work of A.M.D. was fulfilled under State assignment no. 0033-2019-0001 “Development of the theory of condensed state of matter.” The work of P.D.G. was supported by the Foundation for Development of Theoretical Physics and Mathematics “Basis” and the program of strategic academic leadership “Priority-2030” (grant no. K2-2022-025 for the National Research Technological University “MISiS”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Dyugaev or P. D. Grigoriev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyugaev, A.M., Grigoriev, P.D. Modeling of Double-Well Potentials for the Schrödinger Equation. J. Exp. Theor. Phys. 137, 17–22 (2023). https://doi.org/10.1134/S1063776123070014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123070014

Navigation