Skip to main content
Log in

Acoustic Solitons in Helicoids and Spiral Graphene Nanoribbons

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of local regions of longitudinal compression in graphene helicoids and spiral carbon nanoribbons has been numerically simulated. It has been shown that a supersonic acoustic soliton can constantly move without radiation of phonons only in helicoids with transverse radius R < 0.62 nm. Dimensionless velocity s of the soliton in this case falls into the interval 1.0–1.4. In larger radius helicoids and all spiral carbon nanoribbons, the motion of a soliton-like excitation is always accompanied by the intense radiation of phonons (the more the size of the spiral structure, the more intense the radiation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Y. Nakakuki, T. Hirose, H. Sotome, H. Miyasaka, and K. Matsuda, J. Am. Chem. Soc. 140, 4317 (2018). https://doi.org/10.1021/jacs.7b13412

    Article  Google Scholar 

  2. Y. Nakakuki, T. Hirose, and K. Matsuda, J. Am. Chem. Soc. 140, 15461 (2018). https://doi.org/10.1021/jacs.8b09825

    Article  Google Scholar 

  3. Y. Zhao, C. Zhang, D. D. Köhler, J. M. Scheeler, J. C. Wright, P. M. Voyles, and S. Jin, Science (Washington, DC, U. S.) 370, 442 (2020). https://doi.org/10.1126/science.abc4284

    Article  Google Scholar 

  4. S. Avdoshenko, P. Koskinen, H. Sevincli, A. A. Popov, and C. G. Rocha, Sci. Rep. 3, 1632 (2013). https://doi.org/10.1038/srep01632

    Article  ADS  Google Scholar 

  5. T. Korhonen and P. Koskinen, AIP Adv. 4, 127125 (2014). https://doi.org/10.1063/1.4904219

  6. X. Zhang and M. Zhao, Sci. Rep. 4, 5699 (2014). https://doi.org/10.1038/srep05699

    Article  ADS  Google Scholar 

  7. V. Atanasov and A. Saxena, Phys. Rev. B 92, 035440 (2015). https://doi.org/10.1103/PhysRevB.92.035440

  8. X. Xu, B. Liu, W. Zhao, Y. Jiang, L. Liu, W. Li, G. Zhang, and W. Q. Tian, Nanoscale 9, 9693 (2017). https://doi.org/10.1039/C7NR03432F

    Article  Google Scholar 

  9. J. Tan, X. Zhang, W. Liu, X. He, and M. Zhao, Nanotechnology 29, 205202 (2018). https://doi.org/10.1088/1361-6528/aab1d9

  10. V. V. Porsev, A. V. Bandura, S. I. Lukyanov, and R. A. Evarestov, Carbon 152, 755 (2019). https://doi.org/10.1016/j.carbon.2019.06.036

    Article  Google Scholar 

  11. Z.-P. Liu, Y.-D. Guo, X.-H. Yan, H.-L. Zeng, X.‑Y. Mou, Z.-R. Wang, and J.-J. Wang, J. Appl. Phys. 126, 144303 (2019). https://doi.org/10.1063/1.5118738

  12. R. Thakur, P. K. Ahluwalia, A. Kumar, and R. Sharma, Phys. E (Amsterdam, Neth.) 129, 114638 (2021). https://doi.org/10.1016/j.physe.2021.114638

  13. Z. Zhou, L. Yan, X.-M. Wang, D. Zhang, and J.‑Y. Yan, Results Phys. 35, 105351 (2022). https://doi.org/10.1016/j.rinp.2022.105351

  14. F. Xu, H. Yu, A. Sadrzadeh, and B. I. Yakobson, Nano Lett. 16, 34 (2016). https://doi.org/10.1021/acs.nanolett.5b02430

    Article  ADS  Google Scholar 

  15. V. Porsev and R. Evarestov, Nanomaterials 13, 415 (2023). https://doi.org/10.3390/nano13030415

    Article  Google Scholar 

  16. P. Sestak, J. Wu, J. He, J. Pokluda, and Z. Zhang, Phys. Chem. Chem. Phys. 17, 18684 (2015). https://doi.org/10.1039/c5cp02043c

    Article  Google Scholar 

  17. H. Zhan, Y. Zhang, C. Yang, G. Zhang, and Y. Gu, Carbon 120, 258 (2017). https://doi.org/10.1016/j.carbon.2017.05.044

    Article  Google Scholar 

  18. H. Zhan, G. Zhang, C. Yang, and Y. Gu, Nanoscale 10, 18961 (2018). https://doi.org/10.1039/C8NR04882G

    Article  Google Scholar 

  19. S. Norouzi and M. M. S. Fakhrabadi, Appl. Phys. A 125, 321 (2019). https://doi.org/10.1007/s00339-019-2623-8

    Article  ADS  Google Scholar 

  20. C. Zhu, J. Ji, Z. Zhang, S. Dong, N. Wei, and J. Zhao, Mech. Mater. 153, 103683 (2021). https://doi.org/10.1016/j.mechmat.2020.103683

  21. R. Liu, J. Zhao, L. Wang, and N. Wei, Nanotechnology 31, 025709 (2020). https://doi.org/10.1088/1361-6528/ab4760

  22. A. Sharifian, A. Moshfegh, A. Javadzadegan, H. H. Afrouzi, M. Baghani, and M. Baniassadi, Phys. Chem. Chem. Phys. 21, 12423 (2019). https://doi.org/10.1039/C9CP01361J

    Article  Google Scholar 

  23. H. Li, H. H. Afrouzi, M. M. A. Zahra, B. S. Bashar, F. Fathdal, S. K. Hadrawi, A. Alizadeh, M. Hekmatifar, K. Al-Majdi, and I. Alhani, Colloids Surf., A 656, 130324 (2023). https://doi.org/10.1016/j.colsurfa.2022.130324

  24. H. Zhan, G. Zhang, C. Yang, and Y. T. Gu, Phys. Chem. C 122, 7605 (2018). https://doi.org/10.1021/acs.jpcc.8b00868

    Article  Google Scholar 

  25. S. Norouzi and M. M. S. Fakhrabadi, J. Phys. Chem. Sol. 137, 109228 (2020). https://doi.org/10.1016/j.jpcs.2019.109228

  26. A. Sharifian, T. Karbaschi, A. Rajabpour, M. Baghani, J. Wu, and M. Baniassadi, Int. J. Heat Mass Transfer 189, 122719 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.122719

  27. V. F. Nesterenko, Phil. Trans. R. Soc. London, Ser. A 376, 2127 (2018). https://doi.org/10.1098/rsta.2017.0130

    Article  Google Scholar 

  28. P. L. Christiansen, A. V. Zolotaryuk, and A. V. Savin, Phys. Rev. E 56, 877 (1997). https://doi.org/10.1103/PhysRevE.56.877

    Article  MathSciNet  ADS  Google Scholar 

  29. Y. Zolotaryuk, A. V. Savin, and P. L. Christiansen, Phys. Rev. B 57, 14213 (1998). https://doi.org/10.1103/PhysRevB.57.14213

    Article  ADS  Google Scholar 

  30. W. D. Cornell, W. P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995). https://doi.org/10.1021/ja00124a002

    Article  Google Scholar 

  31. A. V. Savin, Yu. S. Kivshar, and B. Hu, Phys. Rev. B 82, 195422 (2010). https://doi.org/10.1103/PhysRevB.82.195422

  32. A. V. Savin and Y. S. Kivshar, Appl. Phys. Lett. 98, 193106 (2011). https://doi.org/10.1063/1.3590256

  33. A. V. Savin and Y. S. Kivshar, Phys. Rev. B 85, 125427 (2012). https://doi.org/10.1103/PhysRevB.85.125427

  34. A. V. Savin and Y. S. Kivshar, Sci. Rep. 7, 4668 (2017). https://doi.org/10.1038/s41598-017-04987-w

  35. S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000). https://doi.org/10.1063/1.481208

    Article  ADS  Google Scholar 

  36. R. Setton, Carbon 34, 69 (1996). https://doi.org/10.1016/0008-6223(95)00136-0

Download references

Funding

This research was supported by a grant for the Federal Research Center of Chemical Physics, Russian Academy of Sciences (State Task FFZE-2022-0009), registration number 122040500069-7. Computations were performed in the interagency supercomputer center at the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, A.V., Savina, O.I. Acoustic Solitons in Helicoids and Spiral Graphene Nanoribbons. J. Exp. Theor. Phys. 136, 720–728 (2023). https://doi.org/10.1134/S1063776123060109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123060109

Navigation