Skip to main content
Log in

Ionization Transition Rates in the Intermediate Regime of the Keldysh Parameter for a (0, 1)*LG Spiral Amplitude Modulated Laser Field

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The mechanisms of the tunnel and multiphoton ionization transitions of hydrogen-like atoms and noble gas atoms are discussed. Atoms potassium and argon, with ionization energy of 4.34 and 15.76 eV, were chosen as the target. The atoms are exposed to Ti:Sapphire, (0,1)*LG, spiral amplitude modulated, laser beam at λ = 800 nm wavelength in a broad intensity range 1012 to 1015 W/cm2. The computational approach to describe tunnel and multiphoton processes was based on using the ADK theory. Stark and ponderomotive effects are also included to study their influence on the transition rate. Obtained results show that, for the lower γ values, the contribution of multiphoton ionization was less significant than the tunnel ionization contribution. In comparison, for higher γ values, multiphoton ionization dominated over tunnel ionization in a total transition rate. It is found that, in this particular case of spiral amplitude modulated mode, the intermediate regime, where both processes equally contribute, strongly depends on the atom selection and laser field intensity. Ionization in the intermediate regime occurs for γ ≈ 10 and 12 for low laser intensities, as γ ≈ 2 and 2.5 for the higher values, in the case of potassium and argon respectively. Our analysis indicated that the Stark and ponderomotive effects have a significant influence on the total transition rate. It is shown that these effects decrease the transition rate value and move the intermediate regime’s position toward lower values of the γ parameter, mainly in the case of higher laser field intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. M. Hollstein and D. Pfannkuche, Phys. Rev. A 92, 053421 (2015).

  2. K. Hütten, M. Mittermair, S. O. Stock, R. Beerwerth, V. Shirvanyan, J. Riemensberger, A. Duensing, R. Heider, M. S. Wagner, A. Guggenmos, S. Fritzsche, N. M. Kabachnik, R. Kienberger and B. Bernhardt, Nat. Commun. 9, 719 (2018).

    Article  ADS  Google Scholar 

  3. G. Mainfray and G. Manus, Rep. Prog. Phys. 54, 1333 (1991).

    Article  ADS  Google Scholar 

  4. A. Sharma, M. N. Slipchenko, M. N. Shneider, X. Wang, K. A. Rahman, and A. Shashurin, Sci. Rep. 8, 2874 (2018).

    Article  ADS  Google Scholar 

  5. M. V. Ammosov, P. A. Golovinsky, I. Yu. Kiyan, V. P. Krainov, and V. M. Ristic, J. Opt. Soc. Am. B 9, 1225 (1992).

    Article  ADS  Google Scholar 

  6. V. S. Popov, Phys. Usp. 47, 855 (2004).

    Article  ADS  Google Scholar 

  7. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

    Google Scholar 

  8. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys. JETP 23, 924 (1966).

    ADS  Google Scholar 

  9. M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).

    ADS  Google Scholar 

  10. H. R. Reiss, Phys. Rev. A 75, 031404 (2007).

  11. X. Hao, Z. Shu, W. Li, S. Hu, and J. Chen, Opt. Express 24, 25250 (2016).

    Article  ADS  Google Scholar 

  12. D. T. Lloyd, K. O’Keeffe, and S. M. Hooker, Opt. Express 27, 6925 (2019).

    Article  ADS  Google Scholar 

  13. R. Wang, Q. Zhang, D. Li, S. Xu, P. Cao, Y. Zhou, W. Cao, and P. Lu, Opt. Express 27, 6471 (2019).

    Article  ADS  Google Scholar 

  14. N. I. Shvetsov-Shilovski, D. Dimitrovski, and L. B. Madsen, Phys. Rev. A 85, 023428 (2012).

  15. H. Wabnitz, A. R. B. de Castro, P. Gürtler, T. Laarmann, W. Laasch, J. Schulz, and T. Möller, Phys. Rev. Lett. 94, 023001 (2005).

  16. A. A. Sorokin, S. V. Bobashev, T. Feigl, K. Tiedtke, H. Wabnitz, and M. Richter, Phys. Rev. Lett. 99, 213002 (2007).

  17. T. Topcu and F. Robicheaux, Phys. Rev. A 86, 053407 (2012).

  18. C. Wang, X. Lai, Z. Hu, Y. Chen, W. Quan, H. Kang, C. Gong, and X. Liu, Phys. Rev. A 90, 013422 (2014).

  19. Y. H. Lai, J. Xu, U. B. Szafruga, B. K. Talbert, X. Gong, K. Zhang, H. Fuest, M. F. Kling, C. I. Blaga, P. Agostini, and L. F. Di Mauro, Phys. Rev. A 96, 063417 (2017).

  20. L. Guo, S. L. Hu, M. Q. Liu, Z. Shu, X. W. Liu, J. Li, W. F. Yang, R. H. Lu, S. S. Han, and J. Chen, arXiv: Atomic Physics (2019).

  21. H. Moradi, V. Shahabadi, E. Madadi, E. Karimi, and F. Hajizadeh, Opt. Express 27, 7266 (2019).

    Article  ADS  Google Scholar 

  22. S. S. Stafeev, L. O’Faolain, M. I. Shanina (Kotlyar), A. G. Nalimov, and V. V. Kotlyar, Comput. Opt. 38, 606 (2014).

    Article  ADS  Google Scholar 

  23. T. Grosjean, D. Courjon, and C. Bainier, Opt. Lett. 32, 976 (2007).

    Article  ADS  Google Scholar 

  24. C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April, B. Schmidt, P.-L. Fortin, N. Thiré, T.Brabec, F. Légaré, J.-C. Kieffer, and M. Piché, Appl. Sci. 3, 70 (2013).

    Article  Google Scholar 

  25. M. Wen, Y. I. Salamin, and C. H. Keitel, Opt. Express 27, 18958 (2019).

    Article  ADS  Google Scholar 

  26. D. J. Armstrong, M. C. Phillips, and A. V. Smith, Appl. Opt. 42, 3550 (2003).

    Article  ADS  Google Scholar 

  27. G. Machavariani, N. Davidson, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, in Proceedings of the Lasers and Electrooptics and the International Quantum Electronics Conference, Munich, June 17–22, 2007, p. 1.

  28. J. Ouyang, W. Perrie, O. J. Allegre, T. Heil, Y. Jin, E. Fearon, D. Eckford, S. P. Edwardson, and G. Dearden, Opt. Express 23, 12562 (2015).

    Article  ADS  Google Scholar 

  29. G. S. Voronov and N. B. Delone, Sov. Phys. JETP 23, 54 (1966).

    ADS  Google Scholar 

  30. M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schröder, M. Lezius, K. L. Kompa, H.-G. Müller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, et al., Nature (London, U.K.) 446, 627 (2007).

    Article  ADS  Google Scholar 

  31. R. Boge, C. Cirelli, A. S. Landsman, S. Heuser, A. Ludwig, J. Maurer, M. Weger, L. Gallmann, and U. Keller, Phys. Rev. Lett. 111, 103003 (2013).

  32. N. B. Delone and V. P. Krainov, Phys. Usp. 42, 669 (1999).

    Article  ADS  Google Scholar 

  33. A. Bunjac, D. B. Popovic, and N. S. Simonovic, arXiv: Atomic Physics (2019).

  34. J. Mitroy, M. S. Safronova, and Ch. W. Clark, J. Phys. B: At., Mol. Opt. Phys. 43, 20201 (2010).

    Article  Google Scholar 

  35. A. Karamatskou, J. Phys. B: At. Mol. Opt. Phys. 50, 013002 (2017).

  36. B. Yang, K. J. Schafer, B. Walker, K. C. Kulander, L. F. di Mauro, and P. Agostini, Acta Phys. Polon. A 86, 41 (1994).

    Article  ADS  Google Scholar 

  37. E. A. Volkova, A. M. Popov, and O. V. Tikhonova, J. Exp. Theor. Phys. 113, 394 (2011).

    Article  ADS  Google Scholar 

  38. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).

    Article  ADS  Google Scholar 

  39. M. Yao and M. J. Padgett, Adv. Opt. Photon. 3, 161 (2011).

    Article  Google Scholar 

  40. M. Uchida and A. Tonomura, Nature (London, U.K.) 464, 737 (2010).

    Article  ADS  Google Scholar 

  41. S. P. Goreslavsky, N. B. Narozhny, and V. P. Yakovlev, J. Opt. Soc. Am. B 46, 1752 (1989).

    Article  ADS  Google Scholar 

  42. F. Gori, J. Opt. Soc. Am. A 18, 1612 (2001).

    Article  ADS  Google Scholar 

  43. J. D. Lawrence, A Catalog of Special Plane Curves (Dover, New York, 1972).

    MATH  Google Scholar 

  44. D. K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, Reading, MA, 1989).

    Google Scholar 

  45. M. J. Padgett and L. Allen, Contemp. Phys. 41, 275 (2000).

    Article  ADS  Google Scholar 

  46. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).

  47. K. M. Tanvir Ahmmed, C. Grambow, and A. M. Kietzig, Micromachines 5, 1219 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge funding provided by the University of Kragujevac—Institute for Information Technologies (contract 451-03-47/2023-01/200378), University of Kragujevac—Faculty of Science (contract 451-03-47/2023-01/200122) through the grants by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Miladinović.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miladinović, T.B., Simić, S. & Danilović, N. Ionization Transition Rates in the Intermediate Regime of the Keldysh Parameter for a (0, 1)*LG Spiral Amplitude Modulated Laser Field. J. Exp. Theor. Phys. 136, 690–698 (2023). https://doi.org/10.1134/S1063776123060080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123060080

Navigation