Skip to main content
Log in

Dipole Plasmon Mode in Nanosize Semiconductor Core–Shell Quantum Dots with a Type II Heterojunction

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Excited states of nanosize two-component semiconductor core–shell crystals with a type II heterojunction are analyzed. It is demonstrated that the dipole plasmon resonance dominates in their photoabsorption spectra. It is found that the variation of the potential barrier height between the core and the shell in a comparatively narrow range leads to a fundamental change in the form of the collective mode from the surface plasmon resonance typical of the photoabsorption spectra of conducting nanosize particles to the rotational plasmon mode, for which only angular degrees of freedom are excited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2011).

  2. Quantum Plasmonics, Ed. by S. I. Bozhevolniy et al. (Springer Int., Switzeland, 2016).

  3. Plasmonics. From Basics to Advanced Topics, Ed. by S. Enoch and N. Bonod, Vol. 167 of Springer Series in Optical Sciences (Springer, Berlin, 2012).

    Google Scholar 

  4. M. S. Tame, K. R. McEnery, S. K. Ozdemir, et al., Nat. Phys. 9, 329 (2013).

    Article  Google Scholar 

  5. J. A. Scholl, A. L. Koh, and J. A. Dionne, Nature (London, U.K.) 483, 421 (2012).

    Article  ADS  Google Scholar 

  6. M. Brack, Rev. Mod. Phys. 65, 667 (1993).

    Article  ADS  Google Scholar 

  7. M. Harb, F. Rabilloud, D. Simon, et al., J. Chem. Phys. 129, 194108 (2008).

  8. F. Xuan and C. Guet, Phys. Rev. A 94, 043415 (2016).

  9. U. Kreibig and M. Vollmer, Optical Properties of Metallic Clusters, Vol. 65 of Springer Series in Materials Science (Springer, Berlin, 1995).

  10. U. Kreibig and P. Zacharias, Z. Phys. 231, 128 (1970).

    Article  ADS  Google Scholar 

  11. I. Kriegel, F. Scotognella, and L. Mannaa, Phys. Rep. 674, 1 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  12. Nanocrystal Quantum Dots, Ed. by V. I. Klimov (CRC, Boca Raton, FL, 2010).

    Google Scholar 

  13. R. C. Monreal, T. J. Antosiewicz, and S. P. Appel, New J. Phys. 15, 083044 (2013).

  14. F. Scotognella, G. della Valle, A. R. S. Kandada, et al., Eur. Phys. J. B 86, 154 (2013).

    Article  ADS  Google Scholar 

  15. Y. Xie, L. Carbone, C. Nobile, et al., ACS Nano 7, 7352 (2013).

    Article  Google Scholar 

  16. A. L. Routzahn, S. L. White, L.-K. Fong, et al., Isr. J. Chem. 52, 983 (2012).

    Article  Google Scholar 

  17. J. M. Luther, P. K. Jain, and T. Ewers, et al., Nat. Mater. 10, 361 (2011).

    Article  ADS  Google Scholar 

  18. J. A. Faucheaux, A. L. D. Stanton, and P. K. Jain, J. Phys. Chem. Lett. 5, 976 (2014).

    Article  Google Scholar 

  19. S. D. Lounis, E. L. Runnerstrom, A. Bergerud, et al., J. Am. Chem. Soc. 136, 7110 (2014).

    Article  Google Scholar 

  20. T. O. Cheche, V. Barna, and I. Stamatin, J. Optoelectron. Adv. Mater. 15, 615 (2013).

    Google Scholar 

  21. M. A. El-Sayed, Acc. Chem. Res. 37, 326 (2004).

    Article  Google Scholar 

  22. S.-W. Hsu, K. On, and A. T. Rao, J. Am. Chem. Soc. 133, 19072 (2011).

    Article  Google Scholar 

  23. X. Liu and M. T. Swihart, Chem. Soc. Rev. 43, 3908 (2014).

    Article  Google Scholar 

  24. G. Garcia, R. Buonsanti, E. L. Runnerstrom, et al., Nano Lett. 11, 4415 (2011).

    Article  ADS  Google Scholar 

  25. M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, J. Am. Chem. Soc. 131, 17736 (2009).

    Article  Google Scholar 

  26. D. J. Rowe, J. S. Jeong, K. A. Mkhoyan, and U. R. Kortshage, Nano Lett. 13, 1317 (2013).

    Article  ADS  Google Scholar 

  27. Zh. Sun and B. Zhao, Appl. Phys. Lett. 91, 221106 (2007).

  28. H. Zhang, V. Kulkarni, E. Prodan, et al., J. Phys. Chem. C 118, 16035 (2014).

    Article  Google Scholar 

  29. A. M. Schimpf, N. Thakkar, C. E. Gunthardt, et al., ACS Nano 8, 1065 (2014).

    Article  Google Scholar 

  30. A. M. Schimpf, C. E. Gunthardt, J. D. Rinehart, et al., J. Am. Chem. Soc. 135, 16569 (2013).

    Article  Google Scholar 

  31. L. G. Gerchikov, C. Guet, and A. N. Ipatov, Phys. Rev. A 66, 053202 (2002).

  32. A. N. Ipatov, L. G. Gerchikov, and C. Guet, J. Comput. Mater. Sci. 35, 347 (2006).

    Article  Google Scholar 

  33. A. N. Ipatov, L. G. Gerchikov, and C. Guet, Nanoscale Res. Lett. 13, 297 (2018).

    Article  ADS  Google Scholar 

  34. L. G. Gerchikov and A. N. Ipatov, J. Exp. Theor. Phys. 132, 922 (2021).

    Article  ADS  Google Scholar 

  35. R. Kostić, and D. Stojanović, J. Optoelectron. Adv. Mater. 6, 121 (2012).

    Google Scholar 

  36. A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots (Nauka, St. Petersburg, 2011) [in Russian].

    Google Scholar 

  37. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  38. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge Univ. Press, Cambridge, 1998).

    Book  Google Scholar 

  39. Core/Shell Quantum Dots. Synthesis, Properties and Devices, Ed. by X. Tong and Z. M. Wand, Vol. 28 of Lecture Notes in Nanoscale Science and Technology (Springer, 2020).

    Google Scholar 

  40. V. I. Klimov et al., Nature (London, U.K.) 447, 441 (2007).

    Article  ADS  Google Scholar 

  41. D. Vasudevan, R. R. Gaddam, A. Trinchi, and I. Cole, J. Alloys Compd. 636, 395 (2015).

    Article  Google Scholar 

  42. Q. Q. Dou et al., Sci. Rep. 5, 8252 (2015).

    Article  Google Scholar 

  43. R. A. Loukanov, et al., Colloids Surf., A 245, 9 (2004).

    Article  Google Scholar 

  44. Nanomaterials for the Life, Vol. 6 of Semiconductor Nanomaterials, Ed. by Ch. Kumar (Wiley-VCH, Weinheim, 2010).

    Google Scholar 

  45. S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, J. Am. Chem. Soc. 125, 11467 (2003).

    Google Scholar 

  46. M. Tytus et al., J. Phys.: Conf. Ser. 104, 012011 (2008).

  47. F. Iikawa et al., Braz. J. Phys. 34, 555 (2004).

    Article  ADS  Google Scholar 

  48. Y. Shoji, R. Tamaki, and Y. Okada, AIP Adv. 7, 065305 (2017).

  49. Clusters of Atoms and Molecules, Vols. 1, 2, Ed. by H. Haberland, Vols. 52, 56 of Springer Series in Chemical Physics (Springer, Berlin, 1994).

  50. W. A. de Heer, Rev. Mod. Phys. 65, 611 (1993).

    Article  ADS  Google Scholar 

  51. C. R. C. Wang, S. Pollack, D. Cameron, and M. M. Kappes, J. Chem. Phys. 93, 3787 (1993).

    Article  Google Scholar 

  52. C. Guet and W. R. Johnson, Phys. Rev. B 45, 11283 (1992).

    Article  ADS  Google Scholar 

  53. B. Palpant, B. Prével, J. Lermé, et al., Phys. Rev. B 57, 1963 (1998).

    Article  ADS  Google Scholar 

  54. A. N. Ipatov, V. K. Ivanov, and R. G. Polozkov, J. Exp. Theor. Phys. 117, 631 (2013).

    Article  ADS  Google Scholar 

  55. A. N. Ipatov and L. G. Gerchikov, J. Exp. Theor. Phys. 118, 93 (2014).

    Article  ADS  Google Scholar 

  56. A. N. Ipatov, V. K. Ivanov, and R. G. Polozkov, Eur. Phys. J. D 68, 249 (2014).

    Article  ADS  Google Scholar 

  57. A. N. Ipatov and L. G. Gerchikov, J. Phys. B: At. Mol. Opt. Phys. 47, 185101 (2014).

  58. L. G. Gerchikov and A. N. Ipatov, J. Exp. Theor. Phys. 119, 891 (2014).

    Article  ADS  Google Scholar 

  59. A. Ipatov, L. Gerchikov, and J. Christiano, Phys. E (Amsterdam, Neth.) 92, 7 (2017).

  60. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, New York, 1999).

    Google Scholar 

  61. T. Shelawati, M. S. Nurisya, A. Mazliana, et al., Superlatt. Microstruct. 131, 95 (2019).

    Article  ADS  Google Scholar 

  62. G. Mie, Ann. Phys. 25, 377 (1908).

    Article  Google Scholar 

  63. G. F. Bertsch and R. A. Brorlia, Oscillations in Finite Quantum Systems (Cambridge Univ. Press, UK, 1994).

    Google Scholar 

  64. The Electron Hole Drops in Semiconductors, Vol. 6 of Modern Problems in Condensed Matter Sciences, Ed. by C. D. Jeffries and L. V. Keldysh (North-Holland, Amsterdam, 1983; Nauka, Moscow, 1988).

  65. Ll. Serra, F. Garcias, J. Navarro, et al., Phys. Rev. B 46, 9369 (1992).

    Article  ADS  Google Scholar 

  66. D. A. Varshalovich, A. N. Moscalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).

    Book  Google Scholar 

  67. M. Ya. Amusia and L. V. Chernysheva, Computation of Atomic Processes (IOP, Bristol, 1997).

    Book  MATH  Google Scholar 

  68. R. Dreizler and E. Gross, Density Functional Theory (Plenum, New York, 1995).

    Google Scholar 

  69. I. I. Sobelman, Introduction to the Theory of Atomic Spectra (Nauka, Moscow, 1977; Pergamon, Oxford, 1972).

  70. T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport (Oxford Univ. Press, New York, 2010).

    Google Scholar 

  71. F. Rossi, Theory of Semiconductor Quantum Devices: Microscopic Modeling and Simulation Strategies (Springer Science, New York, 2011).

    Book  MATH  Google Scholar 

  72. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, Oxford, 1977).

  73. C. de Boor, A Practical Guide to Splines (Springer, New York, 1978).

    Book  MATH  Google Scholar 

  74. J. Sapirstein and W. R. Johnson, J. Phys. B: At., Mol. Opt. Phys. 29, 5213 (1996).

    Article  ADS  Google Scholar 

  75. W. E. Ormand, J. M. Pacheco, S. Sanguinetti, et al., Z. Phys. D 24, 401 (1992).

    Article  ADS  Google Scholar 

  76. G. F. Bertsch and D. Tomanek, Phys. Rev. B 40, 2749 (1989).

    Article  ADS  Google Scholar 

  77. J. M. Pacheco and R. A. Broglia, Phys. Rev. Lett. 62, 400 (1989).

    Article  ADS  Google Scholar 

  78. J. M. Pacheco and W. D. Schöne, Phys. Rev. Lett. 79, 4986 (1997).

    Article  ADS  Google Scholar 

  79. F. Della Salla, R. Rousseau, A. Görling, and D. Marx, Phys. Rev. Lett. 92, 183401.1 (2004).

  80. C. Yannouleas and R. A. Broglia, Ann. Phys. (N.Y.) 217, 105 (1991).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ipatov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ipatov, A.N. Dipole Plasmon Mode in Nanosize Semiconductor Core–Shell Quantum Dots with a Type II Heterojunction. J. Exp. Theor. Phys. 136, 765–777 (2023). https://doi.org/10.1134/S1063776123060067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123060067

Navigation