Skip to main content
Log in

Chiral Symmetry Breaking and Inhomogeneous States in Deformed Ferromagnets

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The general form of chiral terms associated with deformation of a ferromagnet is determined. The possibility of a transition from the helical state to the vortex state is demonstrated for a ferromagnetic rod subjected to elastic torsional strain. In the case of a single screw dislocation, the formation of the skyrmion state due to elastic strains and the helical distribution of magnetization induced by strains in the dislocation core is indicated. The conditions in which a transition from one chiral magnetization distribution to another distribution in an ensemble of identical dislocations are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. I. E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957).

    Google Scholar 

  2. T. Moriya, Phys. Rev. 120, 91 (1960).

    Article  ADS  Google Scholar 

  3. A. N. Bogdanov and D. A. Yablonskii, Sov. Phys. JETP 68, 101 (1989).

    ADS  Google Scholar 

  4. A. N. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994).

    Article  ADS  Google Scholar 

  5. U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature (London, U.K.) 442, 797 (2006).

    Article  ADS  Google Scholar 

  6. A. N. Bogdanov and U. K. Rößler, Phys. Rev. Lett. 87, 037203 (2001).

  7. B. Binz, A. Vishwanath, and V. Aji, Phys. Rev. Lett. 96, 207202 (2006).

  8. S. Mühlbauer, B. Binz, F. Jonietz, et al., Science (Washington, DC, U. D.) 323, 915 (2009).

  9. A. Crepieux and C. Lacroix, J. Magn. Magn. Mater. 182, 341 (1998).

    Article  ADS  Google Scholar 

  10. S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).

  11. A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152 (2013).

    Article  ADS  Google Scholar 

  12. M. Bode, Nature (London, U.K.) 447, 190 (2007).

    Article  ADS  Google Scholar 

  13. A. Fert, N. Reyren, and V. Cros, Nat. Rev. Mater. 2, 17031 (2017).

    Article  ADS  Google Scholar 

  14. V. G. Bar’yakhtar, V. A. L’vov, and D. A. Yablonskii, JETP Lett. 37, 673 (1983).

    ADS  Google Scholar 

  15. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).

  16. V. I. Fedorov, A. G. Gukasov, V. Kozlov, S. V. Maleyev, V. P. Plakhty, and I. A. Zobkalo, Phys. Lett. A 224, 372 (1997).

    Article  ADS  Google Scholar 

  17. A. B. Butenko and U. K. Rößler, EPJ Web Conf. 40, 08006 (2013).

  18. A. Arrott, J. Appl. Phys. 34, 1108 (1963).

    Article  ADS  Google Scholar 

  19. K. L. Metlov and A. Michels, Phys. Rev. B 91, 054404 (2015).

  20. K. L. Metlov, K. Suzuki, D. Honecker, and A. Michels, Phys. Rev. B 101, 214410 (2020).

  21. P. Schoenherr, J. Müller, L. Köhler, et al., Nat. Phys. 14, 465 (2018).

    Article  Google Scholar 

  22. M. Azhar, V. P. Kravchuk, and M. Garst, Phys. Rev. Lett. 128, 157204 (2022).

  23. L. Liu, W. Chen, and Y. Zheng, Phys. Rev. Lett. 128, 257201 (2022).

  24. N. S. Gusev, A. V. Sadovnikov, S. A. Nikitov, M. V. Sapozhnikov, and O. G. Udalov, Phys. Rev. Lett. 124, 157202 (2020).

  25. L. D. Landau and E. M. Lifschitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Pergamon, Oxford, 1975).

  26. M. O. Katanaev, Phys. Usp. 48, 675 (2005).

    Article  ADS  Google Scholar 

  27. N. A. Spaldin, M. Fiebig, and M. Mostovoy, J. Phys.: Condens. Matter 20, 434203 (2008).

  28. J. P. Hirth and J. Lothe, Theory of Dislocations, Reprint ed. (Krieger, Malabar, 1991).

  29. E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures. Symmetry and Optical Phenomena (Springer, Berlin, 1995).

    Book  MATH  Google Scholar 

  30. H. Imamura, P. Bruno, and Y. Utsumi, Phys. Rev. B 69, 121303 (2004).

  31. S.-X. Wang, H.-R. Chang, and J. Zhou, Phys. Rev. B 96, 115204 (2017).

Download references

Funding

This study was performed under State assignment no. 0030-2021-0021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Fraerman.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraerman, A.A. Chiral Symmetry Breaking and Inhomogeneous States in Deformed Ferromagnets. J. Exp. Theor. Phys. 136, 734–740 (2023). https://doi.org/10.1134/S1063776123060055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123060055

Navigation