Skip to main content
Log in

Finite Time Effects in Single and Double Compton Scattering

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The process of Compton scattering by a free electron with subsequent reemission of one or two photons is considered in the assumption of finite interaction time. The corresponding cross sections are obtained in the framework of relativistic quantum electrodynamics using a modified form of fermion propagator with complex transmitted momentum. It is shown that finite time effects can be observable at sufficiently low energies of scattered photons. The proposed method also regularizes arising infrared divergence in the cross section of the double Compton effect. Possible experimental verification of considered theoretical approach is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. D. V. Karlovets, J. High Energy Phys. 2017, 49 (2017).

    Article  MathSciNet  Google Scholar 

  2. D. Karlovets, J. Phys.: Conf. Ser. 938, 012031 (2017).

  3. D. Krebs, D. A. Reis, and R. Santra, Phys. Rev. A 99, 022120 (2019).

  4. K. Nomoto and R. Fukuda, Prog. Theor. Phys. 86, 269 (1991).

    Article  ADS  Google Scholar 

  5. F. Mandl and T. Skyrme, Proc. R. Soc. London, Ser. A 215, 497 (1952).

    Article  ADS  Google Scholar 

  6. J. F. Dawson and Z. Fried, Phys. Rev. D 1, 3363 (1970).

    Article  ADS  Google Scholar 

  7. J. Sucher, Phys. Rev. 107, 1448 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  8. G. López Castro, J. L. M. Lucio, and J. Pestieau, Mod. Phys. Lett. A 06, 3679 (1991).

    Article  ADS  Google Scholar 

  9. G. L. Castro, J. M. Lucio, and J. Pestieau, Int. J. Mod. Phys. A 11, 563 (1996).

    Article  ADS  Google Scholar 

  10. M. Nowakowski and A. Pilaftsis, Zeitschr. Phys., C 60, 121 (1993).

  11. V. Kuksa, Adv. High Energy Phys. 2015, 490238 (2015).

  12. S. Weinberg, The Quantum Theory of Fields, Vol. 1: Foundations, Vol. 2: Modern Applications (Cambridge Univ. Press, Cambridge, 1995).

  13. V. I. Kuksa, Phys. Part. Nucl. 45, 568 (2014).

    Article  Google Scholar 

  14. O. Y. Andreev, L. N. Labzowsky, G. Plunien, and D. A. Solovyev, Phys. Rep. 455, 135 (2008).

    Article  ADS  Google Scholar 

  15. T. A. Zalialiutdinov, D. A. Solovyev, L. N. Labzowsky, and G. Plunien, Phys. Rep. 737, 1 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  16. O. Klein and Y. Nishina, Zeitschr. Phys. 52, 853 (1929).

    Article  ADS  Google Scholar 

  17. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill College, New York, 1964).

    MATH  Google Scholar 

  18. J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons. The Relativistic Quantum Field Theory of Charged Particles with Spin One-Half, 2nd ed., Texts and Monographs in Physics (Berlin, Springer, 1976).

  19. L. Rapoport, B. Zon, and N. Manakov, Theory of Multiphoton Processes in Atoms (Atomizdat, Moscow, 1978).

    Google Scholar 

  20. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Nauka, Moscow, 1969; Wiley-Interscience, New York, 1965).

  21. E. Milotti, At. Data Nucl. Data Tables 70, 137 (1998).

    Article  ADS  Google Scholar 

  22. V. Berestetskii, E. Lifshits, and L. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Butterworth-Heinemann, Oxford, 1982).

  23. T. Heinzl and A. Ilderton, arXiv: 1307.0406 [hep-ph] (2013).

  24. J. Schwinger, L. Deraad, K. Milton, W. Tsai, and J. Norton, Classical Electrodynamics, Advanced Book Program (Avalon, 1998).

    Google Scholar 

  25. R. Mertig, M. Böhm, and A. Denner, Comput. Phys. Commun. 64, 345 (1991).

    Article  ADS  Google Scholar 

  26. V. Shtabovenko, R. Mertig, and F. Orellana, Comput. Phys. Commun. 207, 432 (2016).

    Article  ADS  Google Scholar 

  27. L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952).

    Article  ADS  Google Scholar 

  28. A. Ravenni and J. Chluba, J. Cosmol. Astropart. Phys. 2020, 025 (2020).

  29. K. J. Mork, Phys. Rev. A 4, 917 (1971).

    Article  ADS  Google Scholar 

  30. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Pergamon, Oxford, 1965).

  31. V. Dubrovich and T. Zalialiutdinov, Physics 3, 1167 (2021).

    Article  ADS  Google Scholar 

  32. T. Zalialiutdinov, Y. Baukina, D. Solovyev, and L. Labzowsky, J. Phys. B: At. Mol. Opt. Phys. 47, 115007 (2014).

  33. V. Dinu and G. Torgrimsson, Phys. Rev. D 99, 096018 (2019).

  34. V. Dinu, T. Heinzl, and A. Ilderton, Phys. Rev. D 86, 085037 (2012).

  35. F. Low, Phys. Rev. 88, 53 (1952).

    Article  ADS  Google Scholar 

  36. E. Lötstedt and U. D. Jentschura, Phys. Rev. A 80, 053419 (2009).

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. V. Zalipaev (Laboratory of Quantum Processes and Measurements, ITMO University, St. Petersburg, Russia) and Dr. D. Solovyev (Department of Physics, St. Petersburg State University, Russia) for valuable discussion.

Funding

The work of T. Z. was supported by the grant of the President of the Russian Federation (grant number MK-4796.2022.1.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Zalialiutdinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovich, V.K., Zalialiutdinov, T.A. Finite Time Effects in Single and Double Compton Scattering. J. Exp. Theor. Phys. 136, 683–689 (2023). https://doi.org/10.1134/S1063776123060043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123060043

Navigation