Skip to main content
Log in

Influence of the Encapsulating Layer Thickness on the Quality of MoSe2-Based Heterostructures

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dependence of the width of exciton and trion photoluminescence lines in MoSe2 monolayers on the thickness of hexagonal boron nitride encapsulating layers has been investigated. The possibility of variation of the exciton photoluminescence linewidth due to the interaction of excitons with the modes of resonator cavities made up of a silicon substrate and a boron nitride top layer has been checked. This interaction may significantly change the photoluminescence linewidth owing to the Parcell effect. Measurements taken of samples with different thicknesses of the bottom and top boron nitride layers have not revealed any influence of the Parcell effect on the linewidth. It has turned out however that the linewidth narrows by several times with increasing boron nitride bottom layer thickness from 10 to 100 nm and reaches 2 meV at a thickness of 100 nm. Supposedly, such narrowing of the photoluminescence line is associated with a decrease in the density of submicron bubbles, which takes place at longitudinal stress relaxation in the thicker layer of boron nitride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. G. Wang, A. Chernikov, M. Glazov, et al., Rev. Mod. Phys. 90, 021001 (2018).

  2. Arash Rahimi-Iman, Semiconductor Photonics of Nanomaterials and Quantum Structures Applications in Optoelectronics and Quantum Technologies, Springer Series in Solid-State Sciences (Springer Science, Deutschland, 2021).

    Book  Google Scholar 

  3. G. Moody, D. C. Kavir, K. Hao, et al., Nat. Commun. 6, 8315 (2015).

    Article  ADS  Google Scholar 

  4. T. Jakubczyk, V. Delmonte, M. Koperski, et al., Nano Lett. 16, 5333 (2016).

    Article  ADS  Google Scholar 

  5. F. Cadiz, E. Courtade, C. Robert, et al., Phys. Rev. X 7, 021026 (2017).

  6. A. V. Chernenko and A. S. Brichkin, Izv. Akad. Nauk, Ser. Fiz. 85, 245 (2021).

    Google Scholar 

  7. J. Wierzbowski, J. Klein, F. Sigger, et al., Sci. Rep. 7, 12383 (2017).

    Article  ADS  Google Scholar 

  8. H. H. Fang, B. Han, C. Robert, et al., Phys. Rev. Lett. 123, 067401 (2019).

  9. G. D. Shepard, A. A. Obafunso, Li Xiangzhi, et al., 2D Mater. 4, 021019 (2017).

  10. M. Selig, G. Berghaeuser, A. Raja, et al., Nat. Commun. 7, 13279 (2016).

    Article  ADS  Google Scholar 

  11. J. C. G. Henriques, N. A. Mortensen, and N. M. R. Peres, Phys. Rev. B 103, 235402 (2021).

  12. T. Schmidt, K. Lischka, and W. Zulehne, Phys. Rev. B 45, 8989 (1992).

    Article  ADS  Google Scholar 

  13. S. Lippert, L. M. Schneider, D. Renaud, et al., 2D Mater. 4, 025045 (2017).

  14. D. Kaplan, Y. Gong, K. Mills, et al., 2D Mater. 3, 015005 (2016).

  15. E. Khestanova, F. Guinea, L. Fumagalli, et al., Nat. Commun. 7, 12587 (2016).

    Article  ADS  Google Scholar 

  16. A. V. Tyurnina, D. A. Bandurin, E. Khestanova, et al., ACS Photon. 6, 516 (2019).

    Article  Google Scholar 

  17. L. Schneider, S. Esdaille, D. Rhodes, et al., Opt. Express 23, 37131 (2019).

    Article  ADS  Google Scholar 

  18. S. Dufferwiel, S. Schwarz, F. Withers, et al., Nat. Commun. 6, 8579 (2015).

    Article  ADS  Google Scholar 

  19. T. La Mountain, J. Nelson, E. J. Lenferink, et al., Nat. Commun. 12, 4530 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

This study was carried out in the framework of a state task for the Osip’yan Institute of Solid-State Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chernenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brichkin, A.S., Golyshkov, G.M. & Chernenko, A.V. Influence of the Encapsulating Layer Thickness on the Quality of MoSe2-Based Heterostructures. J. Exp. Theor. Phys. 136, 760–764 (2023). https://doi.org/10.1134/S106377612306002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612306002X

Navigation