Skip to main content
Log in

Influence of Impurities on the Oxygen Adsorption on the Ti5Si3(0001) Surface

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The influence of simple and transition metal impurities, as well as interstitial impurities (B, C, and N), on the oxygen adsorption on the Ti5Si3 titanium silicide surface has been studied using the of projector augmented wave method within the electron density functional theory. It has been shown that titanium-substituting impurities belonging to the latter halves of the 3d–5d periods cause most significant changes in the adsorption energy. In addition, simple metals and interstitial impurities reduce the oxygen–surface interaction. By analyzing local electron densities of states, charge density difference distribution, charge transfer, and the overlap population of oxygen bonds to nearest-neighbor atoms, we have revealed special aspects of impurity influence on chemical bonding between the titanium silicide surface and oxygen. Factors responsible for an increase/decrease in the adsorption energy of oxygen on the doped surface are discussed. A correlation between the change in adsorption energy and the electronegativity of impurities has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. H. Nowotny, in Electronic Structure and Alloy Chemistry of the Transition Elements, Ed. by P. A. Beck (Interscience, New York, 1963), p. 179.

    Google Scholar 

  2. S. P. Murarka, Silicides for VLSI Applications (Academic, New York, 1983).

    Google Scholar 

  3. L. J. Chen, Silicide Technology for Integrated Circuits (IEE, London, 2009).

    Google Scholar 

  4. J. Derrien, J. Chevrier, V. Le Thanh, et al., Appl. Surf. Sci. 56, 382 (1992).

    Article  ADS  Google Scholar 

  5. D. L. Anton, D. M. Shah, D. N. Duhl, et al., J. Mater. 41, 12 (1989).

    Google Scholar 

  6. R. L. Fleischer, J. Mater. Sci. 22, 2281 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  7. D. M. Shah, D. Berczik, D. L. Anton, et al., Mater. Sci. Eng. A 155, 45 (1992).

    Article  Google Scholar 

  8. R. L. Fleischer, D. M. Dimiduk, and H. A. Lipsitt, Ann. Rev. Mater. Sci. 19, 231 (1989).

    Article  ADS  Google Scholar 

  9. R. Swadźba, L. Swadźba, B. Mendala, et al., Intermetallics 87, 81 (2017).

    Article  Google Scholar 

  10. J. Huang, F. Zhao, X. Cui, et al., Appl. Surf. Sci. 582, 152444 (2022).

  11. Z. Li and W. Gao, in Intermetallics Research Progress, Ed. by Y. N. Berdovsky (Nova Science, New York, 2008), p. 1.

    Google Scholar 

  12. Z. Tang, J. J. Williams, A. J. Thom, et al., Intermetallics 16, 1118 (2008).

    Article  Google Scholar 

  13. X. Long and Z. Chong, Trans. Nonferr. Met. Soc. China 4, 25 (1994).

    Google Scholar 

  14. M. Ekman and V. Ozolins, Phys. Rev. B 57, 4419 (1998).

    Article  ADS  Google Scholar 

  15. M. K. Niranjan, Mater. Res. Express 2, 096302 (2015).

  16. C. Colinet, W. Wolf, R. Podloucky, et al., Appl. Phys. Lett. 87, 041910 (2005).

  17. G. Shao, Acta Mater. 53, 3729 (2005).

    Article  ADS  Google Scholar 

  18. T. Wang, J. A. Chen, X. Ling, et al., Mod. Phys. Lett. B 20, 343 (2006).

    Article  ADS  Google Scholar 

  19. C. Colinet and J. C. Tedenac, Intermetallics 18, 1444 (2010).

    Article  Google Scholar 

  20. H. Y. Wang, W. P. Si, S. L. Li, et al., J. Mater. Res. 25, 2317 (2010).

    Article  ADS  Google Scholar 

  21. P. F. Zhang, Y. X. Li, and P. K. Bai, IOP Conf. Ser.: Mater. Sci. Eng. 284, 012013 (2017).

  22. J. J. Williams, Y. Y. Ye, M. J. Kramer, et al., Intermetallics 8, 937 (2000).

    Article  Google Scholar 

  23. J. J. Williams, M. J. Kramer, M. Akinc, et al., J. Mater. Res. 15, 1773 (2000).

    Article  ADS  Google Scholar 

  24. A. J. Thom, V. G. Young, and M. Akinc, J. Alloys Compd. 296, 59 (2000).

    Article  Google Scholar 

  25. Z. Tang, A. J. Thom, and M. Akinc, Intermetallics 14, 537 (2006).

    Article  Google Scholar 

  26. L. S. Chumakova, A. V. Bakulin, and S. E. Kulkova, J. Exp. Theor. Phys. 134, 743 (2022).

    Article  ADS  Google Scholar 

  27. L. S. Chumakova, A. V. Bakulin, S. Hocker, et al., Metals 12, 492 (2022).

    Article  Google Scholar 

  28. A. V. Bakulin, L. S. Chumakova, and S. E. Kulkova, Intermetallics 146, 107587 (2022).

  29. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  30. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  32. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1985).

    Google Scholar 

  33. A. V. Bakulin, S. Hocker, S. Schmauder, et al., Appl. Surf. Sci. 487, 898 (2019).

    Article  ADS  Google Scholar 

  34. W. M. Haynes, CRC Handbook of Chemistry and Physics, 96th ed. (CRC Press/Taylor and Francis, Boca Raton, FL, 2015), p. 9.

    Google Scholar 

  35. B. Cordero, V. Gómez, A. E. Platero-Prats, et al., Dalton Trans. 21, 2832 (2008).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Numerical computation was carried out on a SKIF Cyberia supercomputer at the National Research Tomsk State University.

Funding

This study was supported by the Russian Science Foundation (grant no. 22-23-00078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bakulin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakulin, A.V., Chumakova, L.S. & Kulkova, S.E. Influence of Impurities on the Oxygen Adsorption on the Ti5Si3(0001) Surface. J. Exp. Theor. Phys. 136, 711–719 (2023). https://doi.org/10.1134/S1063776123060018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123060018

Navigation