Skip to main content
Log in

Dependence of the Permittivity and of the Electrocaloric Effect on the Ferroelectric Ceramics Grain Size

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the problem of determining the permittivity and the electrocaloric effect in the model of a ferroelectric ceramics grain. We assume that a grain consists of a spherical ferroelectric core coated with a dielectric shell and placed into a dielectric matrix. The transition layer thickness is assumed small as compared to the grain size. The dependence of the polarization on the electric field in the core is given by the nonlinear Ginzburg–Landau equation. The polarization reversal is induced by a change in the electric field that is considered uniform at large distance from the grain. The electrostriction effect in the core–shell–matrix three-phase system produces an elastic field described by linear equations. To take into account the effect of domain walls on the physical characteristics of the ceramics in the given model, we propose that the Kittel–Mitsui–Furuichi approach be used. The proposed computational algorithm makes it possible to refine the dependence of the number of domains on the spherical grain size. The electrocaloric effect in the grain is represented by the combination of the primary and secondary effects that appear due to ordering of dipole moments of the ferroelectric with the perovskite structure; by way of example, we consider the barium titanate ceramics. For this material, we report on the results of calculations of the dependences of the permittivity and individual electrocaloric effect components on the grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. Starkov, O. Pakhomov, and I. Starkov, Ferroelectrics 14, 108 (2014).

    Google Scholar 

  2. G. Suchaneck, O. Pakhomov, and G. Gerlach, Electrocaloric Cooling (InTechOpen, London, 2017).

  3. A. Greco, C. Aprea, A. Maiorino, and C. Masselli, Int. J. Refrig. 106, 66 (2019).

    Article  Google Scholar 

  4. Y. V. Sinyavsky and V. M. Brodyansky, Ferroelectrics 131, 321 (1992).

    Article  ADS  Google Scholar 

  5. B. C. Kim, K. W. Chae, and C. I. Cheon, J. Korean Phys. Soc. 76, 226 (2020).

    Article  ADS  Google Scholar 

  6. I. A. Starkov, A. S. Anokhin, I. L. Myl’nikov, M. A. Mishnev, and A. S. Starkov, Fiz. Tverd. Tela 64, 443 (2022).

    Google Scholar 

  7. J. H. Qiu and Q. Jiang, J. Appl. Phys. 105, 034110 (2009).

  8. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Univ. Press, Oxford, 1985).

    MATH  Google Scholar 

  9. A. S. Starkov and I. A. Starkov, J. Exp. Theor. Phys. 119, 258 (2014).

    Article  Google Scholar 

  10. A. L. Kholkin, V. A. Trepakov, and G. A. Smolenskii, JETP Lett. 35, 124 (1982).

    ADS  Google Scholar 

  11. E. P. Smirnova, G. Yu. Sotnikova, N. V. Zaitseva, A. A. Kapralov, and G. A. Gavrilov, Tech. Phys. Lett. 44, 60 (2018).

    Article  ADS  Google Scholar 

  12. N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998).

    Article  ADS  Google Scholar 

  13. M. Vrabelj, H. Uršič, Z. Kutnjak, B. Rožič, S. Drnovšek, A. Benčan, V. Bobnar, L. Fulanovič, and B. Malič, J. Eur. Ceram. Soc. 36, 75 (2016).

    Article  Google Scholar 

  14. T. Hoshina, S. Wada, Y. Kuroiwa, and T. Tsurumi, Appl. Phys. Lett. 93, 192914 (2008).

  15. A. Y. Emelyanov, N. A. Pertsev, S. Hoffmann-Eifert, U. Böttger, and R. Waser, J. Electroceram. 9, 5 (2002).

    Article  Google Scholar 

  16. A. S. Starkov, O. V. Pakhomov, and I. A. Starkov, J. Exp. Theor. Phys. 116, 987 (2013).

    Article  ADS  Google Scholar 

  17. B. A. Strukov, S. T. Davitadze, S. G. Shulman, B. V. Goltzman, and V. V. Lemanov, Ferroelectrics 301, 157 (2004).

    Article  ADS  Google Scholar 

  18. T. Hoshina, J. Ceram. Soc. Jpn. 121, 156 (2013).

    Article  Google Scholar 

  19. I. A. Starkov and A. S. Starkov, J. Nanophoton. 10, 033503 (2016).

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1992; Pergamon, New York, 1984).

  21. V. I. Aleshin, Sov. Phys. Crystallogr. 36, 766 (1991).

    Google Scholar 

  22. O. G. Vendik, N. Yu. Medvedeva, and S. P. Zubko, Tech. Phys. Lett. 34, 323 (2008).

    Article  ADS  Google Scholar 

  23. A. S. Starkov, I. A. Starkov, A. I. Dedyk, G. Suchaneck, and G. Gerlach, Phys. Status Solidi B 255, 1700245 (2018).

  24. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1987; Pergamon Press, New York, 1986).

  25. A. S. Starkov and I. A. Starkov, J. Exp. Theor. Phys. 119, 861 (2014).

    Article  ADS  Google Scholar 

  26. V. G. Edvabnik, Sovrem. Probl. Nauki Obrazov., Nos. 1–2, 76 (2015).

  27. L. A. Apresyan, T. V. Vlasova, V. I. Krasovskii, V. I. Kryshtob, and S. I. Rasmagin, Tech. Phys. 65, 1130 (2020).

    Article  Google Scholar 

  28. L. D. Landau and E. M. Lifshits, Phys. Z. Sowjet. 8, 153 (1935).

    Google Scholar 

  29. C. Kittel, Phys. Rev. 70, 965 (1946).

    Article  ADS  Google Scholar 

  30. T. Mitsui and J. Furuichi, Phys. Rev. 90, 193 (1953).

    Article  ADS  Google Scholar 

  31. A. K. Tagantsev, J. Fousek, and L. E. Cross, Domains in Ferroic Crystals and Thin Films (Springer, New York, 2010).

    Book  Google Scholar 

  32. G. Arlt, D. Hennings, and G. de With, J. Appl. Phys. 58, 1619 (1985).

    Article  ADS  Google Scholar 

  33. A. M. Bratkovsky and A. P. Levanyuk, AIP Conf. Proc. 535, 218 (2000).

    Article  ADS  Google Scholar 

  34. Y. Huan, X. Wang, J. Fang, and L. Li, J. Eur. Ceram. Soc. 34, 1445 (2014).

    Article  Google Scholar 

  35. Y. Tan, J. Zhang, Y. Wu, Ch. Wang, V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, and H. Yan, Sci. Rep. 5, 1 (2015).

    Google Scholar 

  36. B. Dai, X. Hu, R. Yin, W. Bai, F. Wen, J. Deng, L. Zheng, J. Du, P. Zheng, and H. Qin, J. Mater. Sci.: Mater. Electron. 28, 7928 (2017).

    Google Scholar 

  37. N. A. Pertsev and A. G. Zembilgotov, J. Appl. Phys. 78, 6170 (1995).

    Article  ADS  Google Scholar 

  38. Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, Phys. Rev. B 70, 024107 (2004).

  39. Y. L. Li, L. E. Cross, and L. Q. Chen, J. Appl. Phys. 98, 064101 (2005).

  40. P. Marton, I. Rychetsky, and J. Hlinka, Phys. Rev. B 81, 144125 (2010).

  41. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 1977).

    Google Scholar 

  42. V. A. Lukacs, M. Airimioaei, L. Padurariu, L. P. Curecheriu, C. E. Ciomaga, A. Bencan,G. Drazic, M. Avakian, J. L. Jones, G. Stoian, M. Deluca, R. Brunner, A. Rotaru, and L. Mitoseriu, J. Eur. Ceram. Soc. 42, 2230 (2022).

    Article  Google Scholar 

  43. V. I. Smirnov, Course of Higher Mathematics (Nauka, Moscow, 1974), Vol. 2 [in Russian].

    Google Scholar 

  44. A. S. Starkov, O. V. Pakhomov, and I. A. Starkov, JETP Lett. 91, 507 (2010).

    Article  ADS  Google Scholar 

  45. G. G. Wiseman and J. K. Kuebler, Phys. Rev. 131, 2023 (1963).

    Article  ADS  Google Scholar 

  46. D. L. Shan, C. H. Lei, Y. C. Cai, K. Pan, and Y. Y. Liu, Int. J. Solids Struct. 216, 59 (2021).

    Article  Google Scholar 

  47. R. P. S. M. Lobo, N. D. Mohallem, and R. L. Moreira, J. Am. Ceram. Soc. 78, 1343 (1995).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 20-58-26015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Starkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starkov, A.S., Starkov, I.A. Dependence of the Permittivity and of the Electrocaloric Effect on the Ferroelectric Ceramics Grain Size. J. Exp. Theor. Phys. 136, 605–619 (2023). https://doi.org/10.1134/S1063776123050126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123050126

Navigation