Skip to main content
Log in

Electric Polarization in the BiMn7O12 Quadruple Manganite: A 57Fe Probe Mössbauer Investigation

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2023

This article has been updated

Abstract

The electrical hyperfine interactions of the probe 57Fe nuclides localized in the structure of the quadruple manganite BiMn7O12 are studied by Mössbauer spectroscopy. The measurements are carried out in the temperature range 101 K < T < 447 K, where this manganite has a nonzero spontaneous electric polarization (Ps); moreover, this range includes the temperature (T* ≈ 240 K) of the P1 ↔ Im structural phase transition. The parameters of the hyperfine interactions of the partial spectra of the 57Fe nuclei are comprehensively analyzed, and their crystal-chemical correspondence to certain positions of Jahn–Teller Mn3+ ions in the structure of manganite is performed. The “dynamic” Born charge model is used to develop an algo rithm to construct the temperature dependence of the polarization of the crystal Ps(T) using structural data of the compound and the experimental values of the quadrupole splittings Δ(T) of the Mössbauer spectra of the 57Fe probe atoms. The Ps(T) dependences obtained on both sides of point T* are analyzed in terms of the mean-field model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Change history

REFERENCES

  1. D. Khomskii, Physics 2, 20 (2009).

    Article  Google Scholar 

  2. K. Kouřil, V. Chlan, H. Štěpánková, et al., Acta Phys. Polon. A 127, 234 (2015).

    Article  ADS  Google Scholar 

  3. Yu. N. Ivanov, A. A. Sokhovskii, and N. V. Volkov, J. Struct. Chem. 54, S130 (2013).

    Article  Google Scholar 

  4. A. G. Smol’nikov, V. V. Ogloblichev, S. V. Verkhovskii, et al., JETP Lett. 102, 674 (2015).

    Article  ADS  Google Scholar 

  5. M. Prinz-Zwick, T. Gimpel, K. Geirhos, et al., Phys. Rev. B 105, 014301 (2022).

  6. A. G. Smol’nikov, V. V. Ogloblichev, A. Yu. Germov, et al., JETP Lett. 107, 134 (2018).

    Article  ADS  Google Scholar 

  7. A. V. Zalessky, A. A. Frolov, T. A. Khimich, et al., Europhys. Lett. 50, 547 (2000).

    Article  ADS  Google Scholar 

  8. S.-H. Baek, A. P. Reyes, M. J. R. Hoch, et al., Phys. Rev. B 74, 140410(R) (2006).

  9. E. Jo, S. Park, J. Lee, et al., Sci. Rep. 7, 2178 (2017).

    Article  ADS  Google Scholar 

  10. A. G. Smol’nikov, V. V. Ogloblicheva, S. V. Verkhovskii, et al., Phys. Met. Metallogr. 118, 134 (2017).

    Article  ADS  Google Scholar 

  11. M. Pregelj, P. Jeglič, A. Zorko, et al., Phys. Rev. B 87, 144408 (2013).

  12. G. M. Kalvius, F. J. Litterst, O. Hartmann, et al., J. Phys.: Conf. Ser. 551, 012014 (2014).

  13. P. J. Baker, H. J. Lewtas, S. J. Blundell, et al., Phys. Rev. B 81, 214403 (2010).

  14. H. J. Lewtas, T. Lancaster, P. J. Baker, et al., Phys. Rev. B 81, 014402 (2010).

  15. G. N. P. Oliveira, R. C. Teixeira, R. P. Moreira, et al., Sci. Rep. 10, 4686 (2020).

    Article  ADS  Google Scholar 

  16. A. M. L. Lopes, G. N. P. Oliveira, and T. M. Mendoną, Phys. Rev. B 84, 014434 (2011).

  17. A. Sobolev, V. Rusakov, A. Moskvin, et al., J. Phys.: Condens. Matter 29, 275803 (2017).

  18. A. V. Sobolev, I. A. Presnyakov, V. S. Rusakov, A. M. Gapochka, Ya. S. Glazkova, M. E. Matsnev, and D. A. Pankratov, J. Exp. Theor. Phys. 124, 943 (2017).

    Article  ADS  Google Scholar 

  19. A. V. Sobolev, V. S. Rusakov, A. M. Gapochka, et al., Phys. Rev. B 101, 224409 (2020).

  20. S. S. M. Santos, M. L. Marcondes, I. P. Miranda, et al., J. Mater. Chem. C 9, 7005 (2021).

    Article  Google Scholar 

  21. T. T. Dang, J. Schell, A. G. Boa, et al., Phys. Rev. B 106, 054416 (2022).

  22. Y. Yeshurun, S. Havlin, and Y. Schlesinger, Solid State Commun. 27, 181 (1978).

    Article  ADS  Google Scholar 

  23. A. Gauzzi, G. Rousse, F. Mezzandri, et al., J. Appl. Phys. 113, 043920 (2013).

  24. I. Yamada, Sci. Technol. Adv. Mater. 18, 541 (2017).

    Article  Google Scholar 

  25. S. V. Streltsov and D. I. Khomskii, Phys. Usp. 60, 1121 (2017).

    Article  ADS  Google Scholar 

  26. A. V. Sobolev, A. V. Bokov, W. Yi, A. A. Belik, I. A. Presniakov, and I. S. Glazkova, J. Exp. Theor. Phys. 129, 896 (2019).

    Article  ADS  Google Scholar 

  27. D. I. Khomskii, Transition Metal Compounds (Cambridge Univ. Press, Cambridge, 2014).

    Book  Google Scholar 

  28. A. A. Belik, Y. Matsushita, Y. Kumagai, et al., Inorg. Chem. 56, 12272 (2017).

    Article  Google Scholar 

  29. I. A. Presniakov, V. S. Rusakov, T. V. Gubaidulina, et al., Phys. Rev. B 76, 214407 (2007).

  30. Y. S. Glazkova, N. Terada, Y. Matsushita, et al., Inorg. Chem. 54, 9081 (2015).

    Article  Google Scholar 

  31. A. A. Belik, Y. S. Glazkova, Y. Katsuya, et al., Phys. Chem. C 120, 8278 (2016).

    Article  Google Scholar 

  32. W. A. Slawinski, H. Okamoto, and H. Fjellwag, Acta Crystallogr. 73, 313 (2017).

    Google Scholar 

  33. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012).

    Article  ADS  Google Scholar 

  34. D. P. E. Dickson and F. J. Berry, Mössbauer Spectroscopy (Cambridge Univ. Press, Cambridge, 1986).

    Book  Google Scholar 

  35. Z. M. Stadnik, J. Phys. Chem. Solids 45, 311 (1984).

    Article  ADS  Google Scholar 

  36. Ph. Ghosez, J.-P. Michenaud, and X. Gonze, Phys. Rev. B 58, 6224 (1998).

    Article  ADS  Google Scholar 

  37. R. D. Shannon and R. X. Fischer, Phys. Rev. B 73, 235111 (2006).

  38. N. E. Brese and M. O’Keeffe, Acta Crystallogr., Ser. B 47, 192 (1991).

    Google Scholar 

  39. C. L. Wang, J. C. Li, M. L. Zhao, et al., Phys. A (Washington, DC, U. S.) 387, 115 (2008).

    Google Scholar 

  40. C. L. Wang, Z. K. Qin, and D. L. Lin, Phys. Rev. B 40, 680 (1989).

    Article  ADS  Google Scholar 

  41. D. C. Arnold, K. S. Knight, F. D. Morrison, and P. Lightfoot, Phys. Rev. Lett. 102, 027602 (2009).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-73-10034P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. S. Glazkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitsenko, V.I., Sobolev, A.V., Belik, A.A. et al. Electric Polarization in the BiMn7O12 Quadruple Manganite: A 57Fe Probe Mössbauer Investigation. J. Exp. Theor. Phys. 136, 620–629 (2023). https://doi.org/10.1134/S1063776123050114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123050114

Navigation