Skip to main content
Log in

Nonlinear Absorption and Photoluminescence of CdTe Nanotetrapods with CdSe Tips under Nonresonance Excitation of Excitons

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The nonlinear absorption and photoluminescence of CdTe/CdSe nanotetrapod colloids have been studied by the pump–probe method for the case of single-photon nonresonance excitation of excitons. A competition between the short-wave and long-wave shifts of the peak of photoluminescence associated with an indirect electron–hole transition, which is observed with increasing excitation radiation intensity, has been found and explained. The former shift is associated with an increase in the one-dimensional exciton radius after the exciton state occupation, and the latter shift may be attributed to the charge-induced Stark effect and local heating of nanotetrapods as a result of electron–phonon interaction at nonresonance excitation of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

RFERENCES

  1. E. Matijević and W. D. Murphy, J. Colloid Interface Sci. 86, 476 (1982).

    Article  ADS  Google Scholar 

  2. A. Fiore, R. Mastria, M. G. Lupo, et al., J. Am. Chem. Soc. 131, 2274 (2009).

    Article  Google Scholar 

  3. S. Deka, K. Miszta, D. Dorfs, et al., Nano Lett. 10, 3770 (2009).

    Article  ADS  Google Scholar 

  4. S. Kumar, M. Jones, S. S. Lo, and G. D. Scholes, Small 3, 1633 (2007).

    Article  Google Scholar 

  5. S. Ithurria and B. Dubertret, J. Am. Chem. Soc. 130, 16504 (2008).

    Article  Google Scholar 

  6. A. M. Smirnov, V. N. Mantsevich, D. S. Smirnov, et al., Solid State Commun. 299, 113651 (2008).

  7. A. M. Smirnov, A. D. Golinskaya, B. M. Saidzhonov, et al., J. Lumin. 229, 117682 (2021).

  8. A. S. Baimuratov, Y. K. Gun’ko, A. G. Shalkovskiy, et al., Adv. Opt. Mater. 5, 1600982 (2017).

  9. C. Heyn, L. Ranasinghe, M. Zocher, and W. Hansen, J. Phys. Chem. C 124, 19809 (2020).

    Article  Google Scholar 

  10. L. V. Keldysh, Phys. Status Solidi A 164, 3 (1997).

    Article  ADS  Google Scholar 

  11. S. Malkmus, S. Kudera, L. Manna, et al., J. Phys. Chem. B 110, 17334 (2006).

    Article  Google Scholar 

  12. D. J. Norris and M. G. Bawendi, Phys. Rev. B 53, 16338 (1996).

    Article  ADS  Google Scholar 

  13. P. A. Kotin, S. S. Bubenov, T. A. Kuznetsova, and S. G. Dorofeev, Mendeleev Commun. 25, 372 (2015).

    Article  Google Scholar 

  14. Y. Yang, Y. Jin, H. He, et al., J. Am. Chem. Soc. 132, 13381 (2010).

    Article  Google Scholar 

  15. A. M. Smirnov, A. D. Golinskaya, P. A. Kotin, et al., J. Lumin. 213, 29 (2019).

    Article  Google Scholar 

  16. A. M. Smirnov, A. D. Golinskaya, P. A. Kotin, et al., J. Phys. Chem. C 123, 27986 (2019).

    Article  Google Scholar 

  17. S. Dayal and C. Burda, J. Am. Chem. Soc. 129, 7977 (2007).

    Article  Google Scholar 

  18. S. F. Wuister, A. van Houselt, C. de Mello Donega, et al., Angew. Chem., Int. Ed. 43, 3029 (2004).

    Article  Google Scholar 

  19. M. Nirmal, C. B. Murray, and M. G. Bawendi, Phys. Rev. B 50, 2293 (1994).

    Article  ADS  Google Scholar 

  20. Y. Wang, A. Suna, J. McHugh, et al., J. Chem. Phys. 92, 6927 (1990).

    Article  ADS  Google Scholar 

  21. P. A. Frantsuzov and R. A. Marcus, Phys. Rev. B 72, 155321 (2005).

  22. A. Katsaba, V. Fedyanin, S. Ambrozevich, et al., Semiconductors 47, 1328 (2013).

    Article  ADS  Google Scholar 

  23. M. S. Zabolotskii, A. V. Katsaba, S. A. Ambrozevich, et al., Phys. Status Solidi RRL 14, 2000167 (2020).

  24. A. V. Katsaba, S. A. Ambrozevich, V. V. Fedyanin, et al., J. Lumin. 214, 116601 (2019).

  25. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).

    Article  Google Scholar 

  26. A. Vitukhnovsky, A. Shul’ga, S. Ambrozevich, et al., Phys. Lett. A 373, 2287 (2009).

    Article  ADS  Google Scholar 

  27. H. Lee, S. W. Yoon, J. P. Ahn, et al., Sol. Energy Mater. Sol. Cells 93, 779 (2009).

    Article  Google Scholar 

  28. H. Lee, S. Kim, W. S. Chung, et al., Sol. Energy Mater. Sol. Cells 95, 446 (2011).

    Article  Google Scholar 

  29. D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, Materials (Basel) 3, 2260 (2010).

    Article  ADS  Google Scholar 

  30. N. Thondavada, R. Chokkareddy, N. V. Naidu, and G. G. Redhi, in Nanomaterials in Diagnostic Tools and Devices, Ed. by S. Kanchi and D. Sharma (Elsevier Sci., Amsterdam, 2020), p. 417.

    Google Scholar 

  31. F. Chen, Q. Lin, H. Shen, and A. Tang, Mater. Chem. Front. 4, 1340 (2020).

    Article  Google Scholar 

  32. Z. Chen, B. Nadal, B. Mahler, et al., Adv. Funct. Mater. 24, 295 (2014).

    Article  Google Scholar 

  33. R. B. Vasiliev, D. N. Dirin, M. S. Sokolikova, et al., Mendeleev Commun. 19, 128 (2009).

    Article  Google Scholar 

  34. Y. S. Park, J. Roh, B. T. Diroll, et al., Nat. Rev. Mater. 6, 382 (2021).

    Article  ADS  Google Scholar 

  35. N. M. Radzi, A. A. Latif, M. F. Ismail, et al., Res. Phys. 16, 103123 (2020).

  36. B. Xu, S. Luo, X. Yan, et al., IEEE J. Sel. Top. Quantum Electron. 23, 1900507 (2017).

  37. R. B. Vasiliev, D. N. Dirin, M. S. Sokolikova, et al., J. Mater. Res. 26, 1621 (2011).

    Article  ADS  Google Scholar 

  38. A. D. Golinskaya, A. M. Smirnov, M. V. Kozlova, et al., Res. Phys. 27, 104488 (2021).

  39. E. Groeneveld and C. de Mello Donegá, J. Phys. Chem. C 116, 16240 (2012).

    Article  Google Scholar 

  40. O. Svelto, Principles of Lasers (Springer, New York, 2010).

    Book  Google Scholar 

  41. A. M. Smirnov, A. D. Golinskaya, K. V. Ezhova, M. V. Kozlova, V. N. Mantsevich, and V. S. Dneprovskii, J. Exp. Theor. Phys. 125, 890 (2017).

    Article  ADS  Google Scholar 

  42. P. Peng, D. J. Milliron, S. M. Hughes, et al., Nano Lett. 5, 1809 (2005).

    Article  ADS  Google Scholar 

  43. A. Granados del Aguila, E. Groeneveld, J. C. Maan, et al., ACS Nano 10, 4102 (2016).

    Article  Google Scholar 

  44. C. de Mello Donegá, Phys. Rev. B 81, 165303 (2010).

  45. B. Chon, J. Bang, J. Park, et al., J. Phys. Chem. C 115, 436 (2011).

    Article  Google Scholar 

  46. G. W. Wen, J. Y. Lin, H. X. Jiang, and Z. Chen, Phys. Rev. B 52, 5913 (1995).

    Article  ADS  Google Scholar 

  47. B. Yu, C. Zhang, L. Chen, et al., J. Chem. Phys. 154, 214502 (2021).

  48. G. Morello, M. de Giorgi, S. Kudera, et al., J. Phys. Chem. C 111, 5846 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the research and educational school “Photonic and Quantum Technologies. Digital Medicine” at the Moscow State University.

Funding

This study was supported by the Russian Science Foundation (grant no. 18-72-10002) and a grant of the President of the Russian Federation for young scientists (grant no. MD-781-2021.1)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Gavrilov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, S.Y., Smirnov, A.M., Kozlova, M.V. et al. Nonlinear Absorption and Photoluminescence of CdTe Nanotetrapods with CdSe Tips under Nonresonance Excitation of Excitons. J. Exp. Theor. Phys. 136, 549–554 (2023). https://doi.org/10.1134/S1063776123050084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123050084

Navigation