Skip to main content
Log in

Black Hole and Dark Matter in the Synchronous Coordinate System

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The static state of a black hole in interaction with dark matter is considered in the synchronous coordinate system. Just as in Schwarzschild coordinates, in synchronous coordinates there exists a regular static spherically symmetric solution of the system of Einstein and Klein–Gordon equations that describes the state of matter extremely compressed by its own gravitational field. There is also no constraint on the mass. There also exist two gravitational radii with the boundary conditions at which the solutions are not unique. In contrast to Schwarzschild coordinates, in synchronous coordinates the determinant of the metric tensor and the component g11(r) do not become zero at the gravitational radii. In synchronous coordinates, in contrast to Schwarzschild coordinates, in the spherical layer between the gravitational radii the signature of the metric tensor is not violated. In synchronous coordinates the Einstein and Klein–Gordon equations are reduced to a system of the second (rather than fourth) order. The solutions were obtained analytically, so that no numerical calculations were required. The gravitational mass defect in the λψ4 model was determined. The total mass of matter turns out to be thrice the Schwarzschild mass determined by a remote observer when compared with Newtonian gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. K. Schwarzschild, Sitzungsber. Konigl. Preuis. Acad. Wissensch., 189 (1916).

  2. A. Einstein, Ann. Phys. 49, 769 (1916).

    Article  Google Scholar 

  3. M. D. Kruskal, Phys. Rev. 119, 1743 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  4. G. Szekers, Publ. Mat. Debrecen 7, 285 (1960).

    Article  Google Scholar 

  5. I. D. Novikov, Doctoral Dissertation (Shternberg Astron. Inst., Mosc. State Univ., Moscow, 1963).

  6. S. Chandrasekhar, Astrophys. J. 74, 81 (1931).

    Article  ADS  Google Scholar 

  7. L. D. Landau, Phys. Zs. Sowjet. 1, 285 (1932).

    Google Scholar 

  8. J. R. Oppenheimer and G. Volkoff, Phys. Rev. 55, 374 (1939).

    Article  ADS  Google Scholar 

  9. J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, and T. Ott, Astrophys. J. 692, 1075 (2009).

    Article  ADS  Google Scholar 

  11. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

  12. https://en.wikipedia.org/wiki/Standard Model.

  13. L. N. Cooper, Phys. Rev. 104, 1189 (1956).

    Article  ADS  Google Scholar 

  14. E. M. Lifshits and L. P. Pitaevski, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Fizmatlit, Moscow, 2000; Pergamon, New York, 1980).

  15. G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and T. Takatsuka, arXiv: 1707.04966v1 (2018).

  16. M. Colpi, S. L. Shapiro, and I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  17. R. Friedberg, T. D. Lee, and Y. Pang, Phys. Rev. D 35, 3640 (1987).

    Article  ADS  Google Scholar 

  18. D. J. Kaup, Phys. Rev. 172, 1331 (1968).

    Article  ADS  Google Scholar 

  19. D. F. Torres, S. Capozziello, and G. Lambiase, Phys. Rev. D 62, 104012 (2000).

  20. B. E. Meierovich, J. Exp. Theor. Phys. 127, 889 (2018).

    Article  ADS  Google Scholar 

  21. B. E. Meierovich, Universe 5, 198 (2019).

    Article  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

  23. B. E. Meierovich, Phys. Rev. D 87, 103510 (2013).

  24. B. E. Meierovich, Universe 6, 113 (2020).

    Article  ADS  Google Scholar 

  25. B. E. Meierovich, J. Phys.: Conf. Ser. 2081, 012026 (2021).

  26. A. S. Eddington, Nature (London, U.K.) 113, 192 (1924).

    Article  ADS  Google Scholar 

  27. G. Lemaitre, Ann. Soc. Sci. Bruxelles I A 53, 51 (1933).

  28. L. S. Pontryagin, Ordinary Differential Equations (Fizmatlit, Moscow, 1961; Addison-Wesley, Reading, MA, 1962).

  29. B. E. Meierovich, J. Grav. 2014, 568958 (2014).

  30. V. I. Dokuchaev and N. O. Nazarova, J. Exp. Theor. Phys. 128, 578 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. Meierovich.

Ethics declarations

The author declares that they has no conflicts of interest.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meierovich, B.E. Black Hole and Dark Matter in the Synchronous Coordinate System. J. Exp. Theor. Phys. 136, 585–592 (2023). https://doi.org/10.1134/S1063776123050035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123050035

Navigation