Skip to main content
Log in

High Optical Harmonics Generation on Solid Surfaces Irradiated by Mid-IR Femtosecond Laser Pulses

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We obtained the spectra of high optical harmonics produced by subrelativistic femtosecond pulses on the surface of polystyrene, CaF2, BK7, and Al solid targets. High harmonics of up to the 51st order of radiation with central 3.85 µm wavelength were observed. The highest order harmonics were generated from the polystyrene target surface. The harmonics energy versus their numbers is shown to fit well a decaying power law with the exponent ranging from 4 to 8/3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. N. Blombergen and Y. R. Shen, Phys. Rev. 141, 298 (1966).

    Article  ADS  Google Scholar 

  2. N. H. Burnett, H. A. Baldis, M. C. Richardson, et al., Appl. Phys. Lett. 31, 172 (1977).

    Article  ADS  Google Scholar 

  3. R. L. Carman, D. W. Forslund, and J. M. Kindel, Phys. Rev. Lett. 46, 29 (1981).

    Article  ADS  Google Scholar 

  4. B. Bezzerides, R. D. Jones, and D. W. Forslund, Phys. Rev. Lett. 49, 202 (1982).

    Article  ADS  Google Scholar 

  5. S. A. Akhmanov, S. M. Gladkov, N. I. Koroteev, et al., Preprint No. 5 (Fac. Phys., Mosc. State Univ., Moscow, 1988).

  6. A. B. Fedotov, S. M. Gladkov, N. I. Koroteev, et al., J. Opt. Soc. Am. B 8, 363 (1991).

    Article  ADS  Google Scholar 

  7. A. B. Fedotov, A. N. Naumov, V. P. Silin, et al., Phys. Lett. A 271, 407 (2000).

    Article  ADS  Google Scholar 

  8. G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).

    Article  ADS  Google Scholar 

  9. P. Gibbon, Phys. Rev. Lett. 76, 50 (1996).

    Article  ADS  Google Scholar 

  10. A. Tarasevitch, K. Lobov, C. Wünsche, et al., Phys. Rev. Lett. 98, 103902 (2007).

  11. V. V. Strelkov, A. A. Gonoskov, I. A. Gonoskov, et al., Phys. Rev. Lett. 107, 043902 (2011).

  12. A. A. Gonoskov, A. V. Korzhimanov, A. V. Kim, et al., Phys. Rev. E 84, 046403 (2011).

  13. A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, and A. M. Sergeev, Phys. Usp. 54, 9 (2011).

    Article  ADS  Google Scholar 

  14. U. Teubner and P. Gibbon, Rev. Mod. Phys. 81, 445 (2009).

    Article  ADS  Google Scholar 

  15. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).

    Article  ADS  Google Scholar 

  16. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).

    Article  Google Scholar 

  17. K. Y. Kim, A. J. Taylor, J. H. Glownia, et al., Nat. Photon. 2, 605 (2008).

    Article  Google Scholar 

  18. A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, et al., Opt. Lett. 43, 5571 (2018).

    Article  ADS  Google Scholar 

  19. P. Colosimo, G. Doumy, C. I. Blaga, et al., Nat. Phys. 4, 386 (2008).

    Article  Google Scholar 

  20. A. D. Koulouklidis, C. Gollner, V. Shumakova, et al., Nat. Commun. 11, 292 (2020).

    Article  ADS  Google Scholar 

  21. A. Englesbe, J. Lin, J. Nees, et al., Appl. Opt. 60, G113 (2021).

    Article  Google Scholar 

  22. Yu. M. Mikhailova, V. T. Platonenko, and S. G. Rykovanov, JETP Lett. 81, 571 (2005).

    Article  ADS  Google Scholar 

  23. V. T. Platonenko and A. F. Sterzhantov, JETP Lett. 91, 71 (2010).

    Article  ADS  Google Scholar 

  24. C. Vozzi, F. Calegari, E. Benedetti, et al., Opt. Lett. 32, 2957 (2007).

    Article  ADS  Google Scholar 

  25. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, et al., Opt. Lett. 36, 2755 (2011).

    Article  ADS  Google Scholar 

  26. E. E. Serebryannikov and A. M. Zheltikov, Phys. Rev. Lett. 113, 043901 (2014).

  27. T. Popmintchev, M.-C. Chen, D. Popmintchev, et al., Science (Washington, DC, U. S.) 336, 1287 (2012).

    Article  ADS  Google Scholar 

  28. A. V. Mitrofanov, D. A. Sidorov-Biryukov, A. A. Voronin, A. Pugzlys, G. Andriukaitis, E. A. Stepanov, S. Alisauskas, T. Flori, A. B. Fedotov, V. Ya. Panchenko, A. Baltuska, and A. M. Zheltikov, Phys. Usp. 58, 89 (2015).

    Article  ADS  Google Scholar 

  29. A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, A. A. Voronin, P. B. Glek, S. V. Ryabchuk, E. E. Serebryannikov, A. B. Fedotov, and A. M. Zheltikov, JETP Lett. 112, 17 (2020).

    Article  ADS  Google Scholar 

  30. B. Dromey, M. Zepf, A. Gopal, et al., Nat. Phys. 2, 456 (2006).

    Article  Google Scholar 

  31. T. Baeva, S. Gordienko, and A. Pukhov, Phys. Rev. E 74, 046404 (2006).

  32. A. V. Mitrofanov, A. A. Voronin, M. V. Rozhko, et al., ACS Photon. 8, 1988 (2021).

    Article  Google Scholar 

  33. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, et al., Optica 3, 299 (2016).

    Article  ADS  Google Scholar 

  34. K. Werner, M. G. Hastings, A. Schweinsberg, et al., Opt. Express 27, 2867 (2019).

    Article  ADS  Google Scholar 

  35. A. A. Lanin, E. A. Stepanov, A. V. Mitrofanov, et al., Opt. Lett. 44, 1888 (2019).

    Article  ADS  Google Scholar 

  36. A. V. Mitrofanov, D. A. Sidorov-Biryukov, P. B. Glek, et al., Opt. Lett. 45, 750 (2020).

    Article  ADS  Google Scholar 

  37. F. Quéré, C. Thaury, H. George, et al., Plasma Phys. Control. Fusion 50, 124007 (2008).

  38. F. Dollar, P. Cummings, V. Chvykov, et al., Phys. Rev. Lett. 110, 175002 (2013).

  39. C. Thaury and F. Quere, J. Phys. B: At. Mol. Opt. Phys. 43, 213001 (2010).

  40. N. Beier, T. Nguyen, J. Lin, et al., New J. Phys. 21, 043052 (2019).

  41. M. R. Edwards and J. M. Mikhailova, Sci. Rep. 10, 5154 (2020).

    Article  ADS  Google Scholar 

  42. S. Bhadoria, T. Blackburn, A. Gonoskov, et al., Phys. Plasmas 29, 093109 (2022).

  43. H. Hamster, A. Sullivan, S. Gordon, et al., Phys. Rev. Lett. 71, 2725 (1993).

    Article  ADS  Google Scholar 

  44. C. Li, M. L. Zhou, W. J. Ding, et al., Phys. Rev. E 84, 036405 (2011).

  45. P. B. Glek and A. M. Zheltikov, J. Appl. Phys. 131, 103104 (2022).

  46. G. Q. Liao, Y. T. Li, Y. H. Zhang, et al., Phys. Rev. Lett. 116, 205003 (2016).

  47. P. B. Glek and A. M. Zheltikov, Sci. Rep. 12, 7660 (2022).

    Article  ADS  Google Scholar 

  48. Y. T. Li, C. Li, M. L. Zhou, et al., Appl. Phys. Lett. 100, 254101 (2012).

Download references

ACKNOWLEDGMENTS

The authors are grateful to Principal Investigator of the Laboratory of Photonics and Nonlinear Spectroscopy A.M. Zheltikov for supervision of the research.

Funding

This work was supported by the Russian Science Foundation (grant nos. 22-22-00955: generation of THz radiation, 22-22-00964: generation of high harmonics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sidorov-Biryukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrofanov, A.V., Rozhko, M.V., Nazarov, M.M. et al. High Optical Harmonics Generation on Solid Surfaces Irradiated by Mid-IR Femtosecond Laser Pulses. J. Exp. Theor. Phys. 136, 430–435 (2023). https://doi.org/10.1134/S1063776123040106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123040106

Navigation