Skip to main content
Log in

Signal Separation from Thermal Neutrons in Electron–Neutron Detectors Using Convolutional Neural Nets in the ENDA Experiment

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The electron–neutron detector array (ENDA) is being created in China within the large high-altitude air shower observatory (LHAASO) project. The concept of the array is to simultaneously record the electromagnetic and hadronic components of extensive air showers (EAS) with EN detectors. To estimate the number of hadrons in an EAS, the array detectors record secondary thermal neutrons delayed relative to the shower front. Some of the delayed pulses are created by the simultaneous passage of several charged particles through the scintillator (the signal from one particle lies below the detection threshold) and by the photomultiplier noise. We propose a neutron pulse separation method for EN detectors using convolutional neural networks and make a comparison with the baseline method being currently applied at the installation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Yu. V. Stenkin, Nucl. Phys. B Proc. Suppl. 196, 293 (2009).

    Article  ADS  Google Scholar 

  2. O. B. Shchegolev, V. V. Alekseenko, D. A. Kuleshov, et al., J. Phys.: Conf. Ser. 1690, 012011 (2020).

  3. Yu. V. Stenkin, V. V. Alekseenko, Danzengluobu, et al., Bull. Russ. Acad. Sci.: Phys. 85, 405 (2021).

    Article  Google Scholar 

  4. O. B. Shchegolev, V. V. Alekseenko, Yu. V. Stenkin, V. I. Stepanov, Ya. V. Yanin, Z. Cai, Z. Cao, S. Cui, X. Guo, C. Guo, X. Xe, Y. Liu, X. Ma, and J. Zhao, Bull. Russ. Acad. Sci.: Phys. 83, 632 (2019).

    Article  Google Scholar 

  5. Yu. V. Stenkin and O. B. Shchegolev, Bull. Russ. Acad. Sci.: Phys. 81, 503 (2017).

    Article  Google Scholar 

  6. Yu. V. Stenkin, V. V. Alekseenko, D. M. Gromushkin, et al., Chin. Phys. C 37, 015001 (2013).

  7. G. Ranucci, Nucl. Instrum. Methods Phys. Res., Sect. A 354, 389 (1995).

    Google Scholar 

  8. F. Pino, L. Stevanato, D. Cester, et al., J. Instrum. 10, T08005 (2015).

  9. J. K. Polack, M. Flaska, A. Enqvist, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 795, 253 (2015).

    Google Scholar 

  10. E. Doucet, T. Brown, P. Chowdhury, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 954, 161201 (2020).

  11. T. S. Sanderson, C. D. Scott, M. Flaska, et al., in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference NSS/MIC (2012), p. 199.

  12. J. Griffiths, S. Kleinegesse, D. Saunders, et al., Mach. Learn.: Sci. Technol. 1, 045022 (2020).

  13. D. M. Gromushkin, V. V. Alekseenko, A. A. Petrukhin, Yu. V. Stenkin, and I. I. Yashin, Bull. Russ. Acad. Sci.: Phys. 73, 407 (2009).

    Article  Google Scholar 

  14. Yu. V. Sten’kin, V. V. Alekseenko, A. S. Bagrova, V. I. Stepanov, O. B. Shchegolev, X. Ma, Sh. Cui, and J. Zhao, Bull. Russ. Acad. Sci.: Phys. 81, 160 (2017).

    Article  Google Scholar 

  15. W. S. Cleveland, Am. Stat. 35, 54 (1981).

    Article  Google Scholar 

  16. P. Refaeilzadeh, L. Tang, and H. Liu, Encycl. Database Syst. 5, 532 (2009).

    Article  Google Scholar 

  17. A. Paszke, S. Gross, F. Massa, et al., Adv. Neural Inform. Process. Syst. 32, 8026 (2019).

    Google Scholar 

  18. J. Deng, J. Guo, T. Liu, et al., arXiv: 1801.07698.

  19. L. van der Maaten and G. Hinton, J. Mach. Learn. Res. 9, 2579 (2008).

    Google Scholar 

  20. D. P. Kingma and J. Ba, arXiv: 1412.6980.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Kurinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurinov, K.O., Kuleshov, D.A., Lagutkina, A.A. et al. Signal Separation from Thermal Neutrons in Electron–Neutron Detectors Using Convolutional Neural Nets in the ENDA Experiment. J. Exp. Theor. Phys. 136, 465–471 (2023). https://doi.org/10.1134/S1063776123040039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123040039

Navigation