Skip to main content
Log in

Dynamic Transformation of Domain Walls in Chiral Ferrimagnets

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of domain walls in ferrimagnets in which spatial dynamics invariance is violated because of the presence of the chiral Dzyaloshinskii–Moriya interaction with energy linear in sublattice spin density gradients is investigated theoretically. Analysis is performed based on numerical integration of equations in the sigma model generalized to the case of a ferrimagnet near the sublattice spin compensation point. It is shown that in contrast to conventional or chiral ferromagnets, chiral ferrimagnets can exhibit effects of dynamic transformation of the domain wall structure with the formation of more complex walls with a nonmonotonic behavior of the spin density in a wall upon an increase in the wall velocity. These effects are possible in a quite narrow neighborhood of the compensation point, and the width of this region increases upon an increase in the Dzyaloshinskii–Moriya interaction constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. D. Atkinson, D. A. Allwood, G. Xiong, et al., Nat. Mater. 2, 85 (2003).

    Article  ADS  Google Scholar 

  2. A. Yamaguchi, T. Ono, S. Nasu, et al., Phys. Rev. Lett. 92, 077205 (2004).

  3. M. Hayashi, L. Thomas, R. Moriya, et al., Science (Washington, DC, U. S.) 320, 209 (2008).

    Article  ADS  Google Scholar 

  4. A. Hoffmann and S. D. Bader, Phys. Rev. Appl. 4, 047001 (2015).

  5. G. Tatara and H. Kohno, Phys. Rev. Lett. 92, 086601 (2004).

  6. A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Eur. Phys. Lett. 69, 990 (2005).

    Article  ADS  Google Scholar 

  7. O. A. Tretiakov, D. Clarke, G.-W. Chern, et al., Phys. Rev. Lett. 100, 127204 (2008).

  8. A. V. Khvalkovskiy, V. Cros, D. Apalkov, et al., Phys. Rev. B 87, 020402 (2013).

  9. S. S. P. Parkin and S.-H. Yang, Nat. Nanotechnol. 10, 195 (2015).

    Article  ADS  Google Scholar 

  10. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. D (Amsterdam, Neth.) 3, 363 (1981).

  11. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rep. 194, 117 (1990).

    Article  ADS  Google Scholar 

  12. A. B. Borisov and V. V. Kiselev, Nonlinear Waves, Solitons and Localized Structures in Magnets (UroRAN, Yekaterinburg, 2009) [in Russian].

  13. M. V. Chetkin and A. de la Campa, JETP Lett. 27, 157 (1978).

    ADS  Google Scholar 

  14. A. L. Zvezdin, JETP Lett. 29, 553 (1979)].

    ADS  Google Scholar 

  15. V. G. Bar’yakhtar, B. A. Ivanov, and A. L. Sukstanskii, Sov. Phys. JETP 48, 1100 (1978).

    ADS  Google Scholar 

  16. V. G. Bar’yakhtar, B. A. Ivanov, and A. L. Sukstanskii, Sov. Phys. JETP 51, 757 (1980).

    ADS  Google Scholar 

  17. V. G. Bar’yakhtar, B. A. Ivanov, and M. V. Chetkin, Sov. Phys. Usp. 28, 563 (1985).

    Article  ADS  Google Scholar 

  18. A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1981).

    Google Scholar 

  19. K.-J. Kim, S. K. Kim, Y. Hirata, et al., Nat. Mater. 16, 1187 (2017).

    Article  ADS  Google Scholar 

  20. M. V. Logunov, S. S. Safonov, A. S. Fedorov, et al., Phys. Rev. Appl. 15, 064024 (2021).

  21. L. Caretta, M. Mann, F. Buttner, et al., Nat. Nanotechnol. 13, 1154 (2018).

    Article  ADS  Google Scholar 

  22. E. G. Galkina, K. E. Zaspel, B. A. Ivanov, N. E. Kulagin, and L. M. Lerman, JETP Lett. 110, 481 (2019).

    Article  ADS  Google Scholar 

  23. B. A. Ivanov, E. G. Galkina, V. E. Kireev, et al., Low Temp. Phys. 46, 841 (2020).

    Article  ADS  Google Scholar 

  24. A. K. Zvezdin, Z. V. Gareeva, and K. A. Zvezdin, J. Magn. Magn. Mater. 509, 166876 (2020).

  25. B. A. Ivanov, Low Temp. Phys. 45, 935 (2019).

    Article  ADS  Google Scholar 

  26. A. Thiaville, S. Rohart, E. Jue, et al., Europhys. Lett. 100, 57002 (2012).

    Article  ADS  Google Scholar 

  27. V. V. Slastikov, C. B. Muratov, J. M. Robbins, et al., Phys. Rev. B 99, 100403(R) (2019).

  28. V. P. Kravchuk, J. Magn. Magn. Mater. 367, 9 (2014).

    Article  ADS  Google Scholar 

  29. E. G. Galkina and B. A. Ivanov, Low Temp. Phys. 44, 618 (2018).

    Article  ADS  Google Scholar 

  30. A. B. Borisov, V. V. Kiseliev, and G. G. Talutz, Solid State Commun. 44, 411 (1982).

    Article  ADS  Google Scholar 

  31. B. A. Ivanov and A. L. Sukstanskii, Sov. Phys. JETP 57, 214 (1983).

    ADS  Google Scholar 

  32. E. G. Galkina and B. A. Ivanov, JETP Lett. 61, 511 (1995).

    ADS  Google Scholar 

  33. V. Baltz, A. Manchon, M. Tsoi, et al., Rev. Mod. Phys. 90, 015005 (2018).

  34. A. Kirilyuk, A. V. Kimel, and Th. Rasing, Rev. Mod. Phys. 82, 2731 (2010).

    Article  ADS  Google Scholar 

  35. B. A. Ivanov, Low Temp. Phys. 40, 91 (2014).

    Article  ADS  Google Scholar 

  36. S. Komineas and N. Papanicolaou, SciPost Phys. 8, 086 (2020).

  37. C. E. Zaspel, E. G. Galkina, and B. A. Ivanov, Phys. Rev. Appl. 12, 044019 (2019).

  38. I. Lisenkov, R. Khymyn, J. Akerman, et al., Phys. Rev. B 100, 100409(R) (2019).

  39. E. G. Galkina, B. A. Ivanov, N. E. Kulagin, L. M. Lerman, and I. A. Yastremskii, J. Exp. Theor. Phys. 132, 572 (2021).

    Article  ADS  Google Scholar 

  40. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, JETP Lett. 25, 486 (1977).

    ADS  Google Scholar 

  41. L. M. Lerman, Sel. Math. Sov. 12, 333 (1993).

    MathSciNet  Google Scholar 

  42. L. M. Lerman, JETP Lett. 51, 383 (1990).

    ADS  Google Scholar 

  43. L. M. Lerman and Ya. L. Umanskii, Prikl. Mat. Mekh. 47, 395 (1983).

    Google Scholar 

  44. E. Schlomann, Appl. Phys. Lett. 19, 274 (1971).

    Article  ADS  Google Scholar 

  45. V. G. Bar’yakhtar, B. A. Ivanov, and A. L. Sukstanskii, JETP Lett. 27, 211 (1978).

    ADS  Google Scholar 

  46. V. M. Eleonskii, N. N. Kirova, and N. E. Kulagin, Sov. Phys. JETP 48, 1113 (1978).

    ADS  Google Scholar 

  47. V. M. Eleonskii, N. N. Kirova, and N. E. Kulagin, Sov. Phys. JETP 50, 209 (1979).

    ADS  Google Scholar 

  48. B. A. Ivanov and N. E. Kulagin, J. Exp. Theor. Phys. 85, 516 (1997).

    Article  ADS  Google Scholar 

  49. N. E. Kulagin and A. F. Popkov, JETP Lett. 43, 249 (1986).

    ADS  Google Scholar 

  50. L. R. Walker, in Magnetism, Ed. by G. T. Rado and H. Suhl (Pergamon, New York, 1963), Vol. 3, p. 451.

    Google Scholar 

  51. T. F. C. Chan and H. B. Keller, SIAM J. Sci. Stat. Comput. 3, 173 (1982).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to B.A. Ivanov and L.M. Lerman for their cooperation and fruitful discussions.

Funding

This work was supported by the Russian Science Foundation (project no. 22-11-00027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Kulagin.

Ethics declarations

The author declares that he has no conflicts of interests.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulagin, N.E. Dynamic Transformation of Domain Walls in Chiral Ferrimagnets. J. Exp. Theor. Phys. 136, 312–320 (2023). https://doi.org/10.1134/S1063776123030159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123030159

Navigation