Skip to main content
Log in

Spatial Structure of the Plasma Flows in the Magnetic Fields of Laser Plasma

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The results of studying the spatial structure of the plasma flows that appear when a laser pulse of relativistic intensity (above 1018 W/cm2) is incident on the surface of a solid target are presented. The ring structure experimentally observed in the cross section of a plasma flow is shown to correspond to the toroidal equilibrium plasma configuration that appears in the strong magnetic fields of laser plasma. A model is proposed to describe astrophysical current jets consisting of a discrete sequence of toroidal equilibrium plasma structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. E. R. Priest and T. Forbes, Magnetic Reconnection. MHD Theory and Applications (Cambridge Univ. Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  2. A. Bykov et al., Mon. Not. R. Astron. Soc. 292, 1 (1997).

    Article  ADS  Google Scholar 

  3. A. A. Bykov and V. Yu. Popov, Vestn. Mosk. Univ., Ser. Fiz. Astron., No. 5, 7 (1999).

  4. V. S. Beskin and I. Yu. Kalashnikov, Astron. Lett. 46, 462 (2020).

    Article  ADS  Google Scholar 

  5. A. Chrysostomou, P. W. Lucas, and J. H. Hough, Nature (London, U.K.) 450, 71 (2007).

    Article  ADS  Google Scholar 

  6. E. C. Hansen, A. Frank, P. Hartigan, and S. V. Lebedev, Astrophys. J. 837, 143 (2017).

    Article  ADS  Google Scholar 

  7. https://astronews.ru/cgi-bin/mng.cgi?page=news& news=20211208052023

  8. F. Mertens et al., Astron. Astrophys. 595, 54 (2016).

    Article  Google Scholar 

  9. V. I. Krauz, K. N. Mitrofanov, A. M. Kharrasov, I. V. Il’ichev, V. V. Myalton, S. S. Anan’ev, and V. S. Beskin, Astron. Rep. 65, 26 (2021).

    Article  ADS  Google Scholar 

  10. Physical Encyclopedy (Sov. Entsikl., Moscow, 1998), Vol. 5 [in Russian].

  11. N. N. Rosanov, Dissipative Optical Solitons. From Micro to Nano and Atto (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  12. A. B. Borisov and V. V. Kiselev, Nonlinear Waves, Solitons and Localized Structures in Magnets, Vol. 2: Topological Solitons, 2D and 3D Patterns (UrO RAN, Ekaterinburg, 2011) [in Russian].

  13. G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977).

    MATH  Google Scholar 

  14. V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasma and Atmosphere (Energoatomizdat, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  15. A. V. Arzhannikov and A. D. Beklemishev, Vestn. Novosib. Univ., Ser. Fiz., No. 11, 107 (2016).

  16. A. A. Andreev, V. P. Andrianov, V. G. Borodin, V. M. Komarov, V. A. Malinov, N. V. Nikitin, A. V. Serdyukov, A. V. Charukhchev, V. N. Chernov, K. Yu. Platonov, A. V. Bessarab, S. G. Garanin, A. A. Gorbunov, and N. A. Suslov, JETP Lett. 79, 324 (2004).

    Article  ADS  Google Scholar 

  17. A. Puchov, Phys. Rev. Lett. 89, 3562 (2001).

    Article  ADS  Google Scholar 

  18. V. S. Belyaev, A. P. Matafonov, and B. V. Zagreev, Int. J. Mod. Phys. D 27, 1844002 (2018).

  19. V. S. Belyaev, G. S. Bisnovatyi-Kogan, A. I. Gromov, B. V. Zagreev, A. V. Lobanov, A. P. Matafonov, S. G. Moiseenko, and O. D. Toropina, Astron. Rep. 62, 162 (2018).

    Article  ADS  Google Scholar 

  20. Y. Murakami et al., Phys. Plasmas 8, 4138 (2001).

    Article  ADS  Google Scholar 

  21. V. I. Krauz et al., Eur. Phys. Lett. 129, 15003 (2020).

    Article  ADS  Google Scholar 

  22. K. Krushelnick et al., Phys. Plasmas 7, 2055 (2000).

    Article  ADS  Google Scholar 

  23. M. Zepf et al., Phys. Rev. Lett. 90, 064801 (2003).

  24. M. Nakatsutsumi et al., Nat. Commun. 9, 280 (2018).

    Article  ADS  Google Scholar 

  25. Ch. Wan et al., Nat. Photon. 16, 519 (2022). https://doi.org/10.1038/s41566-022-01013-y

    Article  ADS  Google Scholar 

  26. V. S. Belyaev, B. V. Zagreev, A. Yu. Kedrov, A. G. Kol’chugin, V. P. Krainov and A. P. Matafonov, J. Exp. Theor. Phys. 133, 396 (2021).

    Article  ADS  Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

  28. V. D. Shafranov, in Problems of Plasma Theory (Gosatomizdat, Moscow, 1963), No. 2, p. 92 [in Russian].

  29. V. I. Il’gisonis, Classical Problems of Hot Plasma, Course of Lectures, No. 8 of Graduate School of Physics Series (MEI, Moscow, 2015) [in Russian].

  30. V. S. Beskin, Phys. Usp. 46, 1209 (2003).

    Article  ADS  Google Scholar 

  31. L. E. Zakharov and V. D. Shafranov, in Problems of Plasma Theory, Ed. by M. A. Leontovich and B. B. Kadomtsev (Energoizdat, Moscow, 1982), No. 11, p. 118 [in Russian].

  32. A. S. Petukhova and S. I. Petukhov, Soln.-Zemn. Fiz., No. 5, 74 (2019).

  33. B. B. Kadomtsev, in Problems of Plasma Theory (Gosatomizdat, Moscow, 1963), No. 2, p. 132 [in Russian].

  34. L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1970), Vol. 2 [in Russian].

    MATH  Google Scholar 

  35. A. B. Mikhailovskii, V. I. Petviashvili, and A. M. Fridman, JETP Lett. 24, 43 (1976).

    ADS  Google Scholar 

  36. V. S. Semenov et al., Vestn. SPbGU, Ser. 4, No. 2, 88 (2007).

  37. S. I. Syrovatskii, Usp. Fiz. Nauk 62, 247 (1957).

    Article  Google Scholar 

  38. V. S. Belyaev, Quantum Electron. 34, 41 (2004).

    Article  ADS  Google Scholar 

  39. V. S. Belyaev, V. P. Krainov, V. S. Lisitsa, and A. P. Matafonov, Phys. Usp. 51, 793 (2008).

    Article  ADS  Google Scholar 

  40. V. S. Beskin and I. Yu. Kalashnikov, Astron. Lett. 46, 462 (2020).

    Article  ADS  Google Scholar 

  41. V. I. Krauz et al., Plasma Phys. 86, 905860607 (2020).

  42. V. I. Krauz et al., Eur. Phys. Lett. 129, 15003 (2020).

    Article  ADS  Google Scholar 

  43. V. I. Krauz, K. N. Mitrofanov, V. V. Myalton, I. V. Il’ichev, A. M. Kharrasov, and Yu. V. Vinogradova, Plasma Phys. Rep. 47, 912 (2021).

    Article  ADS  Google Scholar 

  44. https://pulse.mail.ru/article/magnitnoeperesoedinenie-vpervye-v-laboratorii-6707078346611256767-6460601261263399841/.

Download references

ACKNOWLEDGMENTS

We thank program 10 of NTsFM (Experimental Laboratory Astrophysics and Geophysics) for organizing and conducting fruitful discussions.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-21021 mk) and the Ministry of Science and Higher Education of the Russian Federation (project no. FSMG-2021-0005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Belyaev or V. P. Krainov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, V.S., Zagreev, V.S., Krainov, V.P. et al. Spatial Structure of the Plasma Flows in the Magnetic Fields of Laser Plasma. J. Exp. Theor. Phys. 136, 269–278 (2023). https://doi.org/10.1134/S1063776123030111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123030111

Navigation