Skip to main content
Log in

Quasi-Isentropic Compression of a Nonideal Helium Plasma at a Constant Final Temperature of 21 000 K and Pressures up to 600 GPa

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The quasi-isentropic compressibility of a strongly nonideal helium plasma in the pressure range 250–600 GPa is experimentally studied in devices with cylindrical geometry. The temperature at the front of a cylindrical shock wave in helium (T ≈ 10 000 K) and the flight speed of the inner cascade (W ≈ 3.5 km/s), in the cavity of which the maximum compressed plasma density is achieved, are measured. Data on the compression of a nonideal helium plasma to a density ρ ≈ 3 g/cm3 at an approximately constant final temperature of 21000 K are obtained. The trajectories of the metallic shells compressing the plasma are detected using high-power pulsed X-ray sources with a boundary electron energy of up to 60 MeV. The helium plasma density is determined using the radii of the shells measured at the time of their “stop.” The compressed plasma pressure is obtained using gasdynamic calculations. Comparative theoretical calculations of the quasi-isentropic compression parameters have been carried out using the following two theoretical models: the traditional chemical plasma model (SAHA code) and an ab initio quantum molecular dynamics (QMD) approach. No anomaly of the experimental data in the pressure range of the plasma phase transition theoretically assumed in helium is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

REFERENCES

  1. I. Iosilevskiy, V. Gryaznov, E. Yakub, et al., Contrib. Plasma Phys. 43, 316 (2003).

    Article  ADS  Google Scholar 

  2. M. Schlanges, M. Bonitz, and A. Tschttschjan, Contrib. Plasma Phys. 35, 109 (1995).

    Article  ADS  Google Scholar 

  3. V. K. Gryaznov, I. L. Iosilevskii, and V. E. Fortov, in Encyclopedia of Low Temperature Plasma, Ed. by V. E. Fortov (Fizmatlit, Moscow, 2004), Vol. III-1, p. 111 [in Russian].

    Google Scholar 

  4. C. Winisdoerffer and G. Chabrier, Phys. Rev. E 71, 026402 (2005).

  5. W. Ebeling, Contrib. Plasma Phys. 30, 553 (1990).

    Article  ADS  Google Scholar 

  6. H. Hess, High Press. Res. 1, 203 (1989).

    Article  ADS  Google Scholar 

  7. W. Ebeling, A. Förster, V. Fortov, et al., Thermophysical Properties of Hot Dense Plasmas (Teubner, Stuttgart, 1991).

    Google Scholar 

  8. A. Forster, T. Kalbaum, and W. Ebeling, High Press. Res. 7, 375 (1991).

    Article  ADS  Google Scholar 

  9. V. T. Shvets, J. Exp. Theor. Phys. 116, 159 (2013).

    Article  ADS  Google Scholar 

  10. C. A. Seldam, Proc. Phys. Soc. A 70, 97 (1957).

    Article  ADS  Google Scholar 

  11. V. P. Trubitsyn and F. R. Ulinich, Sov. Phys. Dokl. 7, 45 (1962).

    ADS  Google Scholar 

  12. D. A. Young, A. K. McMahan, and M. Ross, Phys. Rev. B 24, 5119 (1981).

    Article  ADS  Google Scholar 

  13. J. Meyer-ter-Vehn and W. Zittel, Phys. Rev. B 37, 8674 (1988).

    Article  ADS  Google Scholar 

  14. M. Preising and R. Redmer, Contrib. Plasma Phys. 61, e202100105 (2021).

  15. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, Yu. M. Makarov, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, V. A. Komrakov, V. A. Ogorodnikov, A. V. Ryzhkov, E. A. Pronin, and A. A. Yukhimchuk, J. Exp. Theor. Phys. 115, 614 (2012).

    Article  ADS  Google Scholar 

  16. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, V. A. Komrakov, V. A. Ogorodnikov, A. V. Ryzhkov, and A. A. Yukhimchuk, JETP Lett. 96, 158 (2012).

    Article  ADS  Google Scholar 

  17. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Raevskii, V. A. Ogorodnikov, A. A. Yukhimchuk, A. I. Davydov, N. N. Anashkin, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, N. B. Davydov, V. A. Komrakov, A. I. Logvinov, et al., J. Exp. Theor. Phys. 119, 146 (2014).

    Article  ADS  Google Scholar 

  18. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, V. A. Komrakov, A. V. Ryzhkov, V. A. Ogorodnikov, and A. A. Yukhimchuk, JETP Lett. 101, 519 (2015).

    Article  ADS  Google Scholar 

  19. V. K. Gryaznov, I. L. Iosilevskii, and V. E. Fortov, in Shock Waves and Extremal States of Matter, Collection of Articles, Ed. by V. E. Fortov (Nauka, Moscow, 2000), p. 299 [in Russian].

    Google Scholar 

  20. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, A. O. Blikov, V. A. Ogorodnikov, V. K. Gryaznov, and I. L. Iosilevskii, J. Exp. Theor. Phys. 124, 505 (2017).

    Article  ADS  Google Scholar 

  21. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, V. A. Ogorodnikov, A. V. Ryzhkov, V. A. Komrakov, and I. P. Maksimkin, JETP Lett. 108, 656 (2018).

    Article  ADS  Google Scholar 

  22. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, S. V. Erunov, V. A. Arinin, A. O. Blikov, V. A. Komrakov, I. P. Maksimkin, V. A. Ogorodnikov, A. V. Ryzhkov, V. K. Gryaznov, I. L. Iosilevskiy, P. R. Levashov, Ya. S. Lavrinenko, I. V. Morozov, et al., J. Exp. Theor. Phys. 133, 630 (2021).

    Article  ADS  Google Scholar 

  23. M. V. Zhernokletov, V. K. Gryaznov, V. A. Arinin, V. N. Buzin, N. B. Davydov, R. I. Il’kaev, I. L. Iosilevskiy, A. L. Mikhailov, M. G. Novikov, V. V. Khrustalev, and V. E. Fortov, JETP Lett. 96, 432 (2012).

    Article  ADS  Google Scholar 

  24. V. E. Fortov, R. I. Il’kaev, V. A. Arinin, et al., Phys. Rev. Lett. 99, 185001 (2007).

  25. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, S. E. Elfimov, V. A. Komrakov, V. A. Ogorodnikov, and A. V. Ryzhkov, J. Exp. Theor. Phys. 125, 948 (2017).

    Article  ADS  Google Scholar 

  26. V. A. Ogorodnikov, A. G. Ivanov, A. L. Mikhailov, et al., Fiz. Goreniya Vzryva 34, 103 (1998).

    Google Scholar 

  27. V. A. Ogorodnikov, S. V. Erunov, A. O. Blikov, E. V. Kulakov, E. A. Chudakov, M. V. Antipov, K. N. Panov, M. A. Syrunin, V. N. Knyazev, N. B. Davydov, A. B. Georgievskaya, A. O. Yagovkin, I. V. Yurtov, D. N. Zamyslov, A. E. Kovalev, et al., J. Exp. Theor. Phys. 133, 533 (2021).

    Article  ADS  Google Scholar 

  28. Yu. P. Kuropatkin, V. D. Mironenko, V. N. Suvorov, et al., in Proceedings of the 11th IEEE Pulsed Power Conference, Ed. by G. Cooperstein and I. Vitkovitsky (1997), p. 1669.

  29. V. V. Sychev, A. A. Vasserman, A. D. Kozlov, et al., Thermodynamic Properties of Helium, GSSSD (Izdat. Standartov, Moscow, 1984) [in Russian].

    Google Scholar 

  30. V. A. Arinin and B. I. Tkachenko, Pattern Recogn. Image Anal. 19, 63 (2009).

    Article  Google Scholar 

  31. N. F. Gavrilov, G. G. Ivanova, V. I. Selin, and V. N. Sofronov, Vopr. At. Nauki Tekh., Ser.: Metod. Programmy Chisl. Reshen. Zadach Mat. Fiz., No. 3, 11 (1982).

  32. B. L. Glushak, L. F. Gudarenko, and Yu. M. Styazhkin, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsess., No. 2, 57 (1991).

  33. I. R. Trunin, S. V. Koritskaya, and V. Arnold, Preprint No. 75-2000 (Sarov, 2000); S. V. Koritskaya, I. R. Trunin, and W. Arnold, AIP Conf. Proc. 505, 475 (2000).

    Google Scholar 

  34. B. A. Nadykto, A. I. Lomaikin, I. N. Pavlusha, and M. O. Shirshova, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., No. 2, 43 (2012).

  35. A. A. Evstigneev, M. V. Zhernokletov, and V. N. Zubarev, Fiz. Goreniya Vzryva 12, 758 (1976).

    Google Scholar 

  36. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, S. V. Erunov, V. A. Arinin, A. O. Blikov, V. A. Ogorodnikov, A. V. Ryzhkov, V. A. Komrakov, V. G. Kudel’kin, I. P. Maksimkin, V. K. Gryaznov, I. L. Iosilevskiy, P. R. Levashov, D. V. Minakov, and M. A. Paramonov, J. Exp. Theor. Phys. 132, 985 (2021).

    Article  ADS  Google Scholar 

  37. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, in Experimental Data on Shock Wave Compression and Adiabatic Expansion of Condensed Matter, Ed. by R. F. Trunin (RFYaTs-VNIIEF, Sarov, 2001) [in Russian].

  38. O. T. Strand, D. R. Goosman, C. Martinez, et al., Rev. Sci. Instrum. 77, 083108 (2006).

  39. A. V. Chentsov and P. R. Levashov, Contrib. Plasma Phys. 52, 33 (2012).

    Article  ADS  Google Scholar 

  40. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  41. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  42. V. E. Fortov, Thermodynamics of Dynamic Effects on Matter (Fizmatlit, Moscow, 2019) [in Russian].

    Google Scholar 

  43. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, et al., JETP Lett. 16, 201 (1972).

    ADS  Google Scholar 

  44. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, et al., Sov. Phys. JETP 42, 378 (1975).

    ADS  Google Scholar 

  45. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, et al., Sov. Phys. JETP 48, 847 (1978).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank S.E. Elfimov, E.V. Kulakov, A.S. Pupkov, A.V. Romanov, D.P. Turutin, A.I. Gurkin, M.V. Loginov, D.A. Linyaev, G.S. Yandubaev, V.V. Erastov, and V.V. Kovaldov for their assistance in conducting the experiments and processing the experimental data. We are also grateful to A.V. Shutov for fruitful discussions of the problem of dynamic compression of matter in the presence of phase transformations in it.

Funding

This work was supported by the Rosatom State Corporation in terms of the state program for the development of equipment, technologies, and scientific research in the field of atomic energy (RTTN) (project Study of Thermophysical Properties of Substances under Compression to Record High Pressures and Magnetic Fields), the Russian Foundation for Basic Research (project no. 20-02-00287), The Ministry of Science and Higher Education of the Russian Federation within the framework of the program for the creation of youth laboratories (project no. FSWE-2021-0010 Gas Dynamics and Physics of Explosion), and the National Center of Physics and Mathematics (Sarov, Nizhny Novgorod oblast).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Blikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochalov, M.A., Il’kaev, R.I., Fortov, V.E. et al. Quasi-Isentropic Compression of a Nonideal Helium Plasma at a Constant Final Temperature of 21 000 K and Pressures up to 600 GPa. J. Exp. Theor. Phys. 136, 389–404 (2023). https://doi.org/10.1134/S1063776123030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123030032

Navigation