Skip to main content
Log in

Quasi-Isentropic Compression of Gaseous Helium and Deuterium in Spherical Structures at Terapascal Pressures

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The results of four experiments on studying preliminarily statically compressed gaseous helium and deuterium during their subsequent compression in explosive spherical cascade structures providing quasi-isentropic gas compression are presented. For helium, the following parameters were achieved: in one experiment, the compression pressure is Pmean ≈ 4.9 TPa at a density ρmax ≈ 6.4 g/cm3 and the compression ratio is δ = ρ/ρ0 ≈ 320; in another experiment, Pmean ≈ 10.9 TPa, ρmax ≈ 10.3 g/cm3, and δ ≈ 470. For deuterium, these parameters are Pmean ≈ 3.4 TPa, ρmax ≈ 6.0 g/cm3, and δ ≈ 162 in one experiment and Pmean ≈ 13.3 TPa, ρmax ≈ 11.4 g/cm3, and δ ≈ 520 in another experiment. The gas density was determined by an X-ray method using the position of the boundaries of the steel shells compressing a gas. The experiments are simulated with a one-dimensional gasdynamic software package, in which the Kopyshev–Khrustalev equations of state are used for the gases under study. The pressures are determined using calculations, in which the dynamics of gas compression is satisfactorily simulated for the entire set of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

Notes

  1. This mass is located at a distance more than R02/3, where R0 is the initial gas radius in the internal cascade before compression. The pressure at the SW front is from 0.5 to 1.5 GPa.

REFERENCES

  1. W. Ebeling, A. Forster, V. Fortov, et al., Thermophysical Properties of Hot Dense Plasmas (Teubner, Stuttgart, 1991).

    Google Scholar 

  2. V. E. Fortov, Extreme States of Matter: High Energy Density Physics, Vol. 216 of Springer Series in Materials Science (Fizmatlit, Moscow, 2013; Springer, Berlin, 2016).

  3. V. E. Fortov, Extreme States of Matter on Earth and in the Cosmos (Springer, Berlin, 2011).

    Book  MATH  Google Scholar 

  4. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, et al., JETP Lett. 16, 201 (1972).

    ADS  Google Scholar 

  5. R. F. Trunin, G. V. Boriskov, A. I. Bykov, et al., Tech. Phys. 51, 907 (2006).

    Article  Google Scholar 

  6. S. K. Grishechkin, S. K. Gruzdev, V. K. Gryaznov, M. V. Zhernokletov, R. I. Il’kaev, I. L. Iosilevskii, G. N. Kashintseva, S. I. Kirshanov, S. F. Manachkin, V. B. Mintsev, A. L. Mikhalov, A. B. Mezhevov, M. A. Mochalov, V. E. Fortov, V. V. Khrustalev, A. N. Shukin, and A. A. Yukhimchuk, JETP Lett. 80, 398 (2004).

    Article  ADS  Google Scholar 

  7. M. A. Mochalov, Doctoral (Phys. Math.) Dissertation (Russ. Fed. Nucl. Center: All-Russ. Res. Inst. Exp. Phys., Sarov, 2008).

  8. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, A. O. Blikov, V. A. Ogorodnikov, V. K. Gryaznov, and I. L. Iosilevskii, J. Exp. Theor. Phys. 124, 505 (2017).

    Article  ADS  Google Scholar 

  9. G. V. Boriskov, A. I. Bykov, N. I. Egorov, M. V. Zhernokletov, V. N. Pavlov, I. S. Strelkov, O. M. Surdin, V. I. Timareva, and S. I. Belov, J. Exp. Theor. Phys. 130, 183 (2020).

    Article  ADS  Google Scholar 

  10. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, Yu. M. Makarov, V. A. Arinin, S. K. Grishechkin, A. O. Blikov, V. A. Ogorodnikov, A. V. Ryzhkov, and V. K. Gryaznov, JETP Lett. 92, 300 (2010).

    Article  ADS  Google Scholar 

  11. M. V. Zhernokletov, V. A. Raevskii, S. F. Manachkin, N. B. Davydov, K. N. Panov, A. V. Ryzhkov, V. A. Arinin, B. I. Tkachenko, A. I. Logvinov, V. A. Komrakov, A. I. Davydov, and N. N. Anashkin, Combust. Explos., Shock Waves 54, 522 (2018).

    Article  Google Scholar 

  12. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, V. A. Ogorodnikov, A. V. Ryzhkov, V. A. Komrakov and I. P. Maksimkin, JETP Lett. 108, 656 (2018).

    Article  ADS  Google Scholar 

  13. Yu. P. Kuropatkin, V. D. Mironenko, V. N. Suvorov, and A. A. Volkov, in Proceedings of the 11th IEEE Pulsed Power Conference, Ed. by G. Cooperstein and I. Vikovitsky (1997), Vol. 2, p. 1663.

  14. V. F. Basmanov, V. S. Gordeev, A. V. Grishin, et al., Tr. RFYaTs-VNIIEF 20, 172 (2015).

    Google Scholar 

  15. V. A. Arinin and B. I. Tkachenko, Pattern Recogn. Image Anal. 19, 63 (2009).

    Article  Google Scholar 

  16. A. Michels, W. de Graaff, T. Wassenaar, et al., Physica (Amsterdam, Neth.) 25, 25 (1959).

  17. V. V. Sychev, A. A. Vasserman, G. A. Spiridonov, and V. A. Tsymarnyi, Thermodynamic Properties of Helium (GSSSD, Izd-vo Standartov, Moscow, 1984).

    Google Scholar 

  18. N. F. Gavrilov, G. G. Ivanova, V. I. Selin, and V. N. Sofronov, Vopr. At. Nauki Tekh., Ser.: Metod. Progr. Chisl. Resh. Zadach Mat. Fiz., No. 3, 11 (1982).

  19. B. L. Glushak, L. F. Gudarenko, and Yu. M. Styazhkin, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Prots., No. 2, 57 (1991).

  20. B. L. Glushak, O. N. Ignatova, S. S. Nadezhin, and V. A. Raevskii, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Prots., No. 2, 25 (2012).

  21. V. N. Zubarev and A. A. Evstigneev, Fiz. Goreniya Vzryva 20, 114 (1984).

    Google Scholar 

  22. V. P. Kopyshev and V. V. Khrustalev, Prikl. Mekh. Tekh. Fiz. 21, 122 (1980).

    Google Scholar 

  23. V. P. Kopyshev, Prikl. Mekh. Tekh. Fiz. 12, 119 (1971).

    Google Scholar 

  24. W. G. Hoover, M. Ross, K. W. Johnson, et al., J. Chem. Phys. 52, 4931 (1970).

    Article  ADS  Google Scholar 

  25. W. G. Hoover, S. G. Gray, and K. W. Johnson, J. Chem. Phys. 55, 1128 (1971).

    Article  ADS  Google Scholar 

  26. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, S. V. Erunov, V. A. Arinin, A. O. Blikov, V. A. Komrakov, I. P. Maksimkin, V. A. Ogorodnikov, A. V. Ryzhkov, V. K. Gryaznov, I. L. Iosilevskiy, P. R. Levashov, Ya. S. Lavrinenko, I. V. Morozov, D. V. Minakov, M. A. Paramonov, and A. V. Shutov, J. Exp. Theor. Phys. 133, 630 (2021).

    Article  ADS  Google Scholar 

  27. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, S. E. Elfimov, V. A. Komrakov, V. A. Ogorodnikov, and A. V. Ryzhkov, J. Exp. Theor. Phys. 125, 948 (2017).

    Article  ADS  Google Scholar 

  28. S. I. Blinnikov, R. I. Ilkaev, M. A. Mochalov, et al., Phys. Rev. E 99, 033102 (2019).

Download references

ACKNOWLEDGMENTS

We are grateful to R.V. Borisov, E.P. Volkov, S.E. Elfimov, S.Yu. Sogrin, D.P. Turutin, A.V. Buchirin, R.V. Til’kunov, A.S. Sokolova, A.I. Gurkin, E.V. Shevnin, I.P. Maksimkin, and A.I. Lomaikin, who took part in organizing and conducting the experiments and processing the experimental data. We also thank M.A. Mochalov for providing the results of similar experiments.

Funding

The work was supported by the Ministry of Science and Higher Education of Russia (contract no. 075-15-2020-785 with the Joint Institute for High Temperatures of the Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Davydov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhernokletov, M.V., Manachkin, S.F., Davydov, N.B. et al. Quasi-Isentropic Compression of Gaseous Helium and Deuterium in Spherical Structures at Terapascal Pressures. J. Exp. Theor. Phys. 136, 227–240 (2023). https://doi.org/10.1134/S1063776123020139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123020139

Navigation