Skip to main content
Log in

Collective and Quasi-Local Modes in the Optical Spectra of YB6 and YbB6 Hexaborides with Jahn–Teller Structural Instability

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The broad-band reflection spectra of YB6 and YbB6 hexaborides with Jahn–Teller instability of the boron cage have been measured at room temperature. An optical conductivity analysis has revealed, along with the Drude electronic components, heavily overdamped collective modes, which are notable in YB6 for high dielectric contributions, Δε = 2000–5700. The fraction of nonequilibrium charge carriers in YB6, which is at the boundary of structural instability in the hexaboride family, reaches 85–90%, whereas this fraction in doped YbB6 semiconductor is not higher than 25%. It has been shown that unlike the predictions of the topological Kondo insulator model, the surface “metallization” in Yb2+B6 crystals can be explained by additional doping of a surface layer with Yb3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. M. Bakr, R. Kinjo, Y. W. Choi, et al., Phys. Rev. Spec. Top. Accel. Beams 14, 060708 (2011). https://doi.org/10.1103/PhysRevSTAB.14.060708

  2. M. Trenary, Sci.Tech. Adv. Mater. 13, 023002 (2012).

  3. Y. Onuki, A. Umezawa, W. K. Kwok, et al., Phys. Rev. B 40, 11195 (1989). https://doi.org/10.1103/PhysRevB.40.11195

    Article  ADS  Google Scholar 

  4. M. Amara, S. E. Luca, R. M. Galera, et al., Phys. Rev. B 72, 064447 (2005). https://doi.org/10.1103/PhysRevB.72.064447

  5. K. Segawa, A. Tomita, K. Iwashita, et al., J. Magn. Magn. Mater. 104- 107, 1233 (1992). https://doi.org/10.1016/0304-8853(92)90563-4

  6. A. S. Cameron, G. Friemel, and D. S. Inosov, Rep. Prog. Phys. 79, 066502 (2016).

  7. M. C. Aronson, J. L. Sarrao, Z. Fisk, et al., Phys. Rev. B 59, 4720 (1999). https://doi.org/10.1103/PhysRevB.59.4720

    Article  ADS  Google Scholar 

  8. V. V. Glushkov, A. D. Bozhko, A. V. Bogach, et al., Phys. Status Solidi RRL 10, 320 (2016).

    Article  Google Scholar 

  9. N. Sluchanko, V. Glushkov, S. Demishev, et al., Phys. Rev. B 96, 144501 (2017). https://doi.org/10.1103/PhysRevB.96.144501

  10. D. J. Kim, J. Xia, and Z. Fisk, Nat. Mater. 13, 466 (2014). https://doi.org/10.1103/PhysRevLett.104.106408

    Article  ADS  Google Scholar 

  11. E. Dagotto, Science (Washington, DC, U. S.) 309, 257 (2005).

    Article  ADS  Google Scholar 

  12. E. S. Zhukova, B. P. Gorshunov, G. A. Komandin, et al., JETP Lett. 110, 79 (2019).

    Article  ADS  Google Scholar 

  13. E. S. Zhukova, B. P. Gorshunov, G. A. Komandin, et al., Phys. Rev. B 100, 104302 (2019).

  14. H. Werheit, V. Filipov, N. Shitsevalova, et al., J. Phys.: Condens. Matter 24, 385405 (2012). https://doi.org/10.1088/0953-8984/24/38/385405

  15. B. P. Gorshunov, A. A. Volkov, A. S. Prokhorov, and I. E. Spektor, Phys. Solid State 50, 2001 (2008).

    Article  ADS  Google Scholar 

  16. S.-I. Kimura, T. Nanba, S. Kunii, and T. Kasuya, J. Phys. Soc. Jpn. 59, 3388 (1990). https://doi.org/10.1143/JPSJ.59.3388

    Article  ADS  Google Scholar 

  17. B. P. Gorshunov, E. S. Zhukova, G. A. Komandin, et al., JETP Lett. 107, 100 (2018). https://doi.org/10.1134/S0021364018020029

    Article  ADS  Google Scholar 

  18. N. E. Sluchanko, A. N. Azarevich, A. V. Bogach, et al., J. Phys.: Condens. Matter 31, 065604 (2019). https://doi.org/10.1088/1361-648X/aaf44e

  19. N. B. Bolotina, A. P. Dudka, O. N. Khrykina, et al., Phys. Rev. B 100, 205103 (2019).

  20. M. Hartstein, Hsu Liu, Yu-Te Hsu, et al., Science (Washington, DC, U. S.) 23, 101632 (2020).

  21. M. Xia, J. Jiang, Z. R. Ye, et al., Sci. Rep. 4, 5999 (2014).

    Article  Google Scholar 

  22. Z. Yahia, S. Turrell, J. Turrell, and J. P. Mercurio, J. Mol. Struct. 224, 303 (1990).

    Article  ADS  Google Scholar 

  23. S.-I. Kimura, T. Nanba, S. Kunii, and T. Kasuya, J. Phys. Soc. Jpn. 61, 371 (1992).

    Article  ADS  Google Scholar 

  24. E. Franzeskakis, N. de Jong, J. X. Zhang, et al., Phys. Rev. B 90, 235116 (2014).

  25. Tay-Rong Chang, Tanmoy Das, Peng-Jen Chen, et al., Phys. Rev. B 91, 155151 (2015).

  26. Chang-Jong Kang, J. D. Denlinger, J. W. Allen, et al., Phys. Rev. Lett. 116, 116401 (2016).

  27. Yazhou Zhou, Dae-Jeong Kim, F. S. Rosa Priscila, et al., Phys. Rev. B 92, 241118 (2015).

Download references

ACKNOWLEDGMENTS

The authors thank V.V. Glushkov for valuable discussions.

Funding

Experiments were conducted using equipment of Shared Facility Center for Studies of HTSC and Other Strongly Correlated Materials, Lebedev Physical Institute, Russian Academy of Sciences, with support from the Ministry of Science and Higher Education of the Russian Federation (project no. FSMG-2021-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Sluchanko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sluchanko, N.E., Zhukova, E.S., Alyabyeva, L.N. et al. Collective and Quasi-Local Modes in the Optical Spectra of YB6 and YbB6 Hexaborides with Jahn–Teller Structural Instability. J. Exp. Theor. Phys. 136, 148–154 (2023). https://doi.org/10.1134/S1063776123020061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123020061

Navigation