Skip to main content
Log in

Spectral Singularities of the Photoelectric Effect in a Zinc Phthalocyanine–Fullerene (ZnPc:C70) Donor–Acceptor Blend

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Spectral singularities of the ampere–watt sensitivity of photoelectric structures consisting of a transparent indium–tin oxide electrode, a photosensitive organic layer, and an aluminum electrode have been studied. The structures have been formed on a quartz glass substrate. The photosensitive layer has been vacuum-evaporated either from zinc phthalocyanine ZnPc (exhibiting donor properties) and C70 fullerene (acceptor) organic precursors or from a ZnPc:Cr70 donor–acceptor blend. Using computer simulation, the structure of absorption bands has been determined in a wide spectral range for all three above systems. This has made it possible to calculate the absorbed and reflected fractions of radiation incident on the sample and explain the singular spectral behavior of the ampere–watt sensitivity of the ZnPc:C70 blend. It has been shown that the photosensitivity of the blend reaches a maximum near the overlap of the absorption bands of donor and acceptor molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. P. Peumans, S. Uchida, and S. R. Forrest, Nature (London, U.K.) 425, 158 (2003).

    Article  ADS  Google Scholar 

  2. H.-W. Lin, S.-Y. Ku, H.-C. Su, et al., Adv. Mater. 17, 2489 (2005).

    Article  Google Scholar 

  3. A. J. Heeger, Adv. Mater. 26, 10 (2014).

    Article  Google Scholar 

  4. V. A. Milichko, A. S. Shalin, I. S. Mukhin, A. E. Kovrov, A. A. Krasilin, A. V. Vinogradov, P. A. Belov, and C. R. Simovski, Phys. Usp. 59, 727 (2016).

    Article  ADS  Google Scholar 

  5. Y. Yuan, T. J. Reece, P. Sharma, et al., Nat. Mater. 11, 296 (2011).

    Article  ADS  Google Scholar 

  6. Y. Yuan, P. Sharma, Zh. Xiao, et al., Energy Environ. Sci. 5, 8558 (2012).

    Article  Google Scholar 

  7. V. A. Benderskii and E. I. Kats, J. Exp. Theor. Phys. 127, 566 (2018).

    Article  ADS  Google Scholar 

  8. V. A. Benderskii and E. I. Kats, High Energy Chem. 52, 400 (2018).

    Article  Google Scholar 

  9. B. Kippelen and J.-L. Bredas, Energy Environ. Sci. 2, 251 (2009).

    Article  Google Scholar 

  10. K. Cnops, B. P. Rand, D. Cheyns, et al., Nat. Commun. 5, 3406 (2014).

    Article  ADS  Google Scholar 

  11. K. J. Baeg, M. Binda, D. Natali, et al., Adv. Mater. 25, 4267 (2013).

    Article  Google Scholar 

  12. E. Manna, T. Xiao, J. Shinaret, et al., Electronics 4, 688 (2015).

    Article  Google Scholar 

  13. G. Yu, K. Pakbaz, and A. J. Heeger, Appl. Phys. Lett. 64, 3422 (1994).

    Article  ADS  Google Scholar 

  14. K. S. Nalwa, J. A. Carr, R. C. Mahadevapuram, et al., Energy Environ. Sci. 5, 7042 (2012).

    Article  Google Scholar 

  15. O. Hofmann, P. Miller, P. Sullivan, et al., Sens. Actuators, B 106, 878 (2005).

    Article  Google Scholar 

  16. B. Kraabel, C. H. Lee, D. McBranch, et al., Chem.Phys. Lett. 213, 389 (1993).

    Article  ADS  Google Scholar 

  17. K. Suemori, T. Miyata, T. Yokoyama, et al., Appl. Phys. Lett. 86, 063509 (2005).

  18. F. Roth, C. Lupulescu, T. Arion, et al., J. Appl. Phys. 115, 033705 (2014).

  19. L. M. Blinov, V. V. Lazarev, and S. G. Yudin, Crystallogr. Rep. 58, 906 (2013).

    Article  ADS  Google Scholar 

  20. C.-F. Lin, M. Zhang, S.-W. Liu, et al., Int. J. Mol. Sci. 12, 476 (2011).

    Article  Google Scholar 

  21. G. Yu, J. Gao, J. C. Hummelen, et al., Science (Washington, DC, U. S.) 270, 1789 (1995).

    Article  ADS  Google Scholar 

  22. S. R. Cowan, N. Banerji, W. L. Leong, et al., Adv. Funct. Mater. 22, 1116 (2012).

    Article  Google Scholar 

  23. D. Beljonne, J. Cornil, L. Mussioli, et al., Chem. Mater. 23, 591 (2011).

    Article  Google Scholar 

  24. R.-J. Baeg, M. Binda, D. Natali, et al., Adv. Mater. 25, 4267 (2013).

    Article  Google Scholar 

  25. E. A. Silin’sh, M. V. Kurik, and V. Chapek, Electronic Processes in Organic Molecular Crystals. Phenomena of Location and Polarization (Zinatne, Riga, 1988) [in Russian].

    Google Scholar 

  26. http://emlab.utep.edu/ee5390fdtd.htm.

  27. Chemical Encyclopedy (Bol. Ross. Entsikl., Moscow, 1998), Vol. 5, p. 195 [in Russian].

  28. A. B. P. Lever, S. R. Pickens, P. C. Minor, et al., J. Am. Chem. Soc. 103, 6800 (1981).

    Article  Google Scholar 

  29. K. V. Zuev, Cand. Sci. (Eng.) Dissertation (Mendeleev Russ. Chem. Technol. Univ., Moscow, 2019).

  30. S. P. Palto, A. V. Alpatova, A. R. Geivandov, L. M. Blinov, V. V. Lazarev, and S. G. Yudin, Opt. Spectrosc. 124, 206 (2018).

    Article  ADS  Google Scholar 

  31. V. V. Lazarev, L. M. Blinov, S. G. Yudin, V. V. Artemov, and S. P. Palto, J. Exp. Theor. Phys. 130, 133 (2020).

    Article  ADS  Google Scholar 

  32. H. Fujiwara and M. Kondo, Phys. Rev. B 71, 075109 (2005).

  33. A. D. Rakić, A. B. Djurišć, J. M. Elazar, et al., Appl. Opt. 37, 5271 (1998).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of a government task for the Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Palto.

Ethics declarations

The authors declare that they have no conflicts on interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, V.V., Geivandov, A.R. & Palto, S.P. Spectral Singularities of the Photoelectric Effect in a Zinc Phthalocyanine–Fullerene (ZnPc:C70) Donor–Acceptor Blend. J. Exp. Theor. Phys. 136, 131–138 (2023). https://doi.org/10.1134/S106377612302005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612302005X

Navigation