Skip to main content
Log in

57Fe Mössbauer Effect Study of Y(Fe1 – xNix)2 Synthesized under High Pressure

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The measurements of magnetic hyperfine fields (MHF), Hhf, and isomer shift, δ, in Y(Fe1 – xNix)2 intermetallic compounds (the MgCu2 structure type) synthesized at high pressure are performed. The MHF values that appear on 57Fe nuclei at a nickel concentration x below 20 at % practically do not change and are approximately equal to 22 T, and in the range from x = 0.4 to 0.98 they decrease linearly with an increase in the Ni concentration. However, linear extrapolation of the hyperfine field as a function of Ni concentration does not lead to its disappearance in YNi2. For YFe2, the rotation of the easy axis from the [101] direction to the [111] direction with increasing temperature is found. As the Ni concentration increases to x = 0.3 at a temperature of 5 K, the easy magnetization axis [101] is observed, and at x = 0.4 the axis changes direction to [100]. Based on the shape of the concentration dependence of the hyperfine field, it is assumed that during the crystallization of Y(Fe1 – xNix)2 under high pressure conditions, a magnetic moment exists on Ni ions. First-principles calculations of magnetic properties and hyperfine interactions are performed, which are consistent with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. L. J. Parker, T. Atou, and J. V. Badding, Science (Washington, DC, U. S.) 273, 95 (1996).

    Article  ADS  Google Scholar 

  2. A. V. Tsvyashchenko, L. N. Fomicheva, M. V. Magnitskaya, et al., JETP Lett. 68, 908 (1998).

    Article  ADS  Google Scholar 

  3. A. V. Tsvyashchenko, L. N. Fomicheva, M. V. Magnitskaya, V. A. Sidorov, E. N. Shirani, A. V. Kuznetsov, D. V. Eremenko, and V. N. Trofimov, Phys. Met. Metallogr. 93, S59 (2002).

    Google Scholar 

  4. A. A. Adeleke and Y. Yao, J. Chem. Phys. 124, 4752 (2020).

    Article  Google Scholar 

  5. F. Stein and A. Leineweber, J. Mater. Sci. 56, 5321 (2021).

    Article  ADS  Google Scholar 

  6. C. Ritter, J. Phys.: Condens. Matter 1, 2765 (1989).

    ADS  Google Scholar 

  7. A. Posinger, M. Reissner, W. Steiner, et al., J. Phys.: Condens. Matter 5, 7277 (1993).

    ADS  Google Scholar 

  8. V. Paul-Boncour, A. Lindbaum, M. Latroche, et al., Intermetallics 14, 483 (2006).

    Article  Google Scholar 

  9. M. Forker, P. de la Presa, and A. F. Pasquevich, J. Phys.: Condens. Matter 18, 253 (2005).

    ADS  Google Scholar 

  10. E. Gratz and A. S. Markosyan, J. Phys.: Condens. Matter 13, R385 (2001).

    ADS  Google Scholar 

  11. F. Z. Mohammad, S. Yehia, and S. Aly, Int. J. Phys. Appl. 2, 135 (2010).

    Google Scholar 

  12. O. Myakush, V. Babizhetskyy, P. Myronenko, et al., Chem. Met. Alloys 4, 152 (2011).

    Article  Google Scholar 

  13. A. V. Tsvyashchenko, L. N. Fomicheva, and S. D. Antipov, J. Magn. Magn. Mater. 98, 285 (1991).

    Article  ADS  Google Scholar 

  14. L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Press. Res. 24, 371 (2004).

    Article  ADS  Google Scholar 

  15. A. V. Tsvyashchenko, J. Less Common Met. 99, L9 (1984).

    Article  Google Scholar 

  16. S. I. Reiman, N. I. Rokhlov, V. S. Shpinel’, et al., Sov. Phys. JETP 59, 190 (1984).

    ADS  Google Scholar 

  17. A. S. Mechenov, Regularized Least Squares Method (Mosk. Gos. Univ., Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  18. M. G. Luijpen, P. C. M. Gubbens, A. M. van der Kraan, et al., Phys. B+C (Amsterdam, Neth.) 86–88, 141 (1977).

  19. G. J. Bowden, D. St. P. Bunbury, A. P. Guimaraes, et al., J. Phys. C 1, 1376 (1968).

    Article  ADS  Google Scholar 

  20. K. H. J. Buschow, Rep. Progr. Phys. 40, 1179 (1977).

    Article  ADS  Google Scholar 

  21. K. Itoh, K. Kanematsu, and K.-I. Kobayashi, J. Phys. Soc. Jpn. 58, 4650 (1989).

    Article  ADS  Google Scholar 

  22. M. J. Besnus, P. Bauer, and J. M. Genin, J. Phys. F 8, 191 (1978).

    Article  ADS  Google Scholar 

  23. S. K. Arif, I. Sigalas, and D. S. T. P. Bunbury, Phys. Status Solidi A 41, 585 (1977).

    Article  ADS  Google Scholar 

  24. A. M. van der Kraan and P. C. M. Gubbens, J. Phys. Coll. 35, C6-469 (1974).

    Google Scholar 

  25. R. M. Moon, W. C. Koehler, and J. Farrell, J. Appl. Phys. 36, 978 (1965).

    Article  ADS  Google Scholar 

  26. O. Eriksson, B. Johansson, M. S. S. Brooks, et al., Phys. Rev. B 40, 9519 (1989).

    Article  ADS  Google Scholar 

  27. K. Yoshimura, Y. Yoshimoto, M. Mekata, et al., J. Magn. Magn. Mater. 70, 147 (1987).

    Article  ADS  Google Scholar 

  28. T. Goto, K. Fukamichi, T. Sakakibara, et al., Solid State Commun. 72, 945 (1989).

    Article  ADS  Google Scholar 

  29. A. V. Tsvyashchenko, L. N. Fomicheva, E. N. Shirani, et al., Phys. Rev. B 55, 6377 (1997).

    Article  ADS  Google Scholar 

  30. P. Blaha, K. Schwarz, F. Tran, et al., J. Chem. Phys. 152, 074101 (2020).

  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.I. Krylov for help with the experiment. This work was financially supported by Russian Science Foundation under Grant no. 22-22-00806 (https://rscf.ru/en/project/22-22-00806/). The numerical calculations were performed using computing resources of the federal collective usage center “Complex for Simulation and Data Processing for Mega-science Facilities” at NRC “Kurchatov Institute” (http://ckp.nrcki.ru/) and supercomputers at Joint Supercomputer Center of RAS (JSCC RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bokov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokov, A.V., Magnitskaya, M.V., Salamatin, D.A. et al. 57Fe Mössbauer Effect Study of Y(Fe1 – xNix)2 Synthesized under High Pressure. J. Exp. Theor. Phys. 136, 305–311 (2023). https://doi.org/10.1134/S1063776123020024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776123020024

Navigation