Skip to main content
Log in

Radiation of a Material Particle Placed in a Dielectric Medium under the Action of Electromagnetic Field

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

It has been shown that taking account of radiation from a material particle with negative relative permittivity εp that is in a dielectric medium with permittivity εm and experiences the action of an electromagnetic field prevents unlimited growth of particle’s electric dipole moment and its related electric fields if 2εm + εp → 0 and the medium and particle are lossless. Calculated radiation losses are embodied in a correction to the dielectric losses of a real particle. Using polystyrene with a silver nanoparticle showing negative permittivity in the optical range as an example, the behavior of the particle versus particle size has been studied for the permittivity varying in the interval –16 < εp < 16. It has been found that even if the permittivity of the nanoparticle is positive, taking the particle radiation into account considerably improves the accuracy of quasistatic calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

REFERENCES

  1. B. A. Belyaev, An. A. Leksikov, V. V. Tyurnev, and D. A. Shabanov, Dokl. Phys. 66, 59 (2021).

    Article  ADS  Google Scholar 

  2. J. C. Maxwell Garnett, Phil. Trans. R. Soc. London, Ser. A 203, 359 (1904).

    Google Scholar 

  3. B. A. Belyaev and V. V. Tyurnev, J. Exp. Theor. Phys. 127, 608 (2018).

    Article  ADS  Google Scholar 

  4. D. A. G. Bruggeman, Ann. Phys. 24, 636 (1935).

    Article  Google Scholar 

  5. T. C. Choy, Effective Medium Theory (Oxford Univ. Press, Oxford, 2016), Ch. 1.

    Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

  7. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics. Mainly Electromagnetism and Matter (Addison Wesley, Reading, MA, 1964), Chap. 6_4 (6.16).

  8. D. J. R. Appleby, N. K. Ponon, K. S. K. Kwa, et al., Nano Lett. 14, 3864 (2014).

    Article  ADS  Google Scholar 

  9. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).

    Article  ADS  Google Scholar 

  10. R. Chang, H.-P. Chiang, P. T. Leung, D. P. Tsai, and W. S. Tse, Solid State Commun. 133, 315 (2005).

    Article  ADS  Google Scholar 

  11. M. I. Tribelsky and A. E. Miroshnichenko, Phys. Usp. 65, 40 (2022).

    Article  ADS  Google Scholar 

  12. B. A. Belyaev and V. V. Tyurnev, Microwave Opt. Technol. Lett. 58, 1883 (2016).

    Article  Google Scholar 

  13. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1967; Pergamon, Oxford, 1975).

  14. T. G. Mackay, J. Nanophoton. 1, 019501 (2007).

  15. X. Zhang, J. Qio, X. Li, J. Zhao, and L. Liu, Appl. Opt. 59, 2337 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Belyaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, B.A., Tyurnev, V.V. & Shabanov, D.A. Radiation of a Material Particle Placed in a Dielectric Medium under the Action of Electromagnetic Field. J. Exp. Theor. Phys. 135, 796–799 (2022). https://doi.org/10.1134/S1063776122120020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122120020

Navigation