Skip to main content
Log in

Picosecond Modulation of the Fundamental Absorption of Light: Mapping of Oscillations and Depletion of Electron Population in the Field of Intrinsic Intense Stimulated Emission in an AlxGa1 – xAs–GaAs–AlxGa1 – xAs Heterostructure (Experimental Study)

  • REVIEWS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new, experimentally found phenomenon of quantum optics is described. In the beginning of high-power picosecond optical pumping of the GaAs layer in a heterostructure, intense picosecond stimulated emission is generated in this layer. The envelope of the fundamental absorption spectrum becomes modulated. This modulation cyclically changes with time, reflecting the radiation-excited deviation from the Fermi electron distribution, oscillating in time and energy space. The corresponding electron oscillations lead to the temporal modulation of emission. The investigation of this phenomenon revealed, along with other things, some fundamental processes, which should be explained in terms of the nonlinear optics of semiconductors; at the same time, they made it possible to explain some instabilities of the semiconductor laser radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

REFERENCES

  1. P. P. Vasil’ev, Quantum Electron. 24, 540 (1994).

    Article  ADS  Google Scholar 

  2. P. Gadonas, R. Danelyus, and A. Piskarskas, Sov. J. Quantum Electron. 11, 407 (1981).

    Article  ADS  Google Scholar 

  3. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, J. Exp. Theor. Phys. 116, 551 (2013).

    Article  ADS  Google Scholar 

  4. N. N. Ageeva, I. L. Bronevoi, A. N. Krivonosov, S. E. Kumekov, T. A. Nalet, and S. V. Stegantsov, Semiconductors 39, 650 (2005).

    Article  ADS  Google Scholar 

  5. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, A. N. Krivonosov, N. S. Vorob’ev, P. B. Gornostaev, V. I. Lozovoi, and M. Ya. Schelev, Instrum. Exp. Tech. 54, 548 (2011).

    Article  Google Scholar 

  6. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, et al., Zh. Radioelektron. 11, 1 (2018). http://jre.cplire.ru/jre/nov18/13/text.pdf.

  7. I. L. Bronevoi, R. A. Gadonas, V. V. Krasauskas, et al., JETP Lett. 42, 395 (1985).

    ADS  Google Scholar 

  8. I. L. Bronevoi, S. E. Kumekov, and V. I. Perel’, JETP Lett. 43, 473 (1986).

    ADS  Google Scholar 

  9. D. Hulin, M. Joffre, A. Migus, et al., J. de Phys. 48, 267 (1987).

    Article  Google Scholar 

  10. A. M. Fox, R. J. Manning, and A. Miller, J. Appl. Phys. 65, 4287 (1989).

    Article  ADS  Google Scholar 

  11. N. N. Ageeva, I. L. Bronevoi, E. G. Dyadyushkin, et al., JETP Lett. 48, 276 (1988).

    ADS  Google Scholar 

  12. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, J. Exp. Theor. Phys. 117, 191 (2013).

    Article  ADS  Google Scholar 

  13. I. L. Bronevoi, A. N. Krivonosov, and T. A. Nalet, Solid State Commun. 98, 903 (1996).

    Article  ADS  Google Scholar 

  14. N. N. Ageeva, I. L. Bronevoi, A. N. Krivonosov, S. E. Kumekov, and S. V. Stegantsov, Semiconductors 36, 136 (2002).

    Article  ADS  Google Scholar 

  15. I. L. Bronevoi and A. N. Krivonosov, Semiconductors 32, 479 (1998).

    Article  ADS  Google Scholar 

  16. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, Semiconductors 54, 22 (2020).

    Article  ADS  Google Scholar 

  17. L. W. Casperson, J. Appl. Phys. 48, 256 (1977).

    Article  ADS  Google Scholar 

  18. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, Semiconductors 56, 153 (2022).

    Article  ADS  Google Scholar 

  19. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, Semiconductors 55, 154 (2021).

    Article  ADS  Google Scholar 

  20. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, Semiconductors 56, 145 (2022).

    Article  ADS  Google Scholar 

  21. N. N. Ageeva, I. L. Bronevoi, E. G. Dyadyushkin, et al., Solid State Commun. 72, 625 (1989).

    Article  ADS  Google Scholar 

  22. N. N. Ageeva, I. L. Bronevoi, S. E. Kumekov, et al., Proc. SPIE 1842, 70 (1992).

    Article  ADS  Google Scholar 

  23. N. N. Ageeva, I. L. Bronevoi, A. N. Krivonosov, et al., Izv. Akad. Nauk, Ser. Fiz. 58, 89 (1994).

    Google Scholar 

  24. I. L. Bronevoi, A. N. Krivonosov, and V. I. Perel’, Solid State Commun. 94, 363 (1995).

    Article  ADS  Google Scholar 

  25. N. N. Ageeva, I. L. Bronevoi, and A. N. Krivonosov, Semiconductors 35, 67 (2001).

    Article  ADS  Google Scholar 

  26. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, Semiconductors 53, 1431 (2019).

    Article  ADS  Google Scholar 

  27. N. N. Ageeva, V. B. Borisov, I. L. Bronevoi, et al., Solid State Commun. 75, 167 (1990).

    Article  ADS  Google Scholar 

  28. Yu. D. Kalafati and V. A. Kokin, Sov. Phys. JETP 72, 1003 (1991).

    ADS  Google Scholar 

  29. S. E. Kumekov and V. I. Perel’, Sov. Phys. JETP 67, 193 (1988).

    ADS  Google Scholar 

  30. J. S. Blakemore, J. Appl. Phys. 53, R123 (1982).

    Article  ADS  Google Scholar 

  31. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, Semiconductors 55, 476 (2021).

    Article  ADS  Google Scholar 

  32. N. N. Ageeva, I. L. Bronevoi, and A. N. Krivonosov, J. Commun. Technol. Electron. 68 (2023, in press).

  33. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, Semiconductors 54, 1205 (2020).

    Article  ADS  Google Scholar 

  34. N. A. Semenov, Technical Electrodynamics (Svyaz’, Moscow, 1973) [in Russian].

    Google Scholar 

  35. V. N. Luk’yanov, A. T. Semenov, N. V. Shelkov, et al., Sov. J. Quantum Electron. 5, 1293 (1975).

    Article  ADS  Google Scholar 

  36. P. P. Vasil’ev, R. V. Penty, and I. H. White, Light Sci. Appl. 5, e16086 (2016).

  37. A. V. Andreev, Sov. Phys. Usp. 33, 997 (1990).

    Article  ADS  Google Scholar 

  38. P. P. Vasil’ev, R. V. Penty, and I. H. White, Opt. Express 26, 26156 (2018).

    Article  ADS  Google Scholar 

  39. C. W. Willemsen, L. A. Coldren, and H. Temkin, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  40. C. L. Tang, H. Statz, and G. de Mars, J. Appl. Phys. 34, 2289 (1963).

    Article  ADS  Google Scholar 

  41. O. Svelto, Principles of Lasers (Plenum, New York, 1989).

    Google Scholar 

  42. H. Statz, C. L. Tang, and J. M. Lavine, J. Appl. Phys. 35, 2581 (1964).

    Article  ADS  Google Scholar 

  43. L. V. Asryan and R. A. Suris, Semiconductors 33, 981 (1999).

    Article  ADS  Google Scholar 

  44. A. V. Savel’ev, V. V. Korenev, M. V. Maksimov, and A. E. Zhukov, Semiconductors 49, 1499 (2015).

    Article  ADS  Google Scholar 

  45. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  Google Scholar 

  46. I. L. Bronevoi, A. N. Krivonosov, and V. I. Perel’, Solid State Commun. 94, 805 (1995).

    Article  ADS  Google Scholar 

  47. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, J. Commun. Technol. Electron. 63, 1235 (2018).

    Article  Google Scholar 

  48. P. M. Platzman and P. Wolf, Waves and Interactions in Solid State Plasmas (Academic, New York, 1973).

    Google Scholar 

  49. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, Semiconductors 46, 921 (2012).

    Article  ADS  Google Scholar 

  50. N. N. Ageeva, I. L. Bronevoi, A. N. Krivonosov, and S. V. Stegantsov, Semiconductors 40, 785 (2006).

    Article  ADS  Google Scholar 

  51. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, Semiconductors 44, 1285 (2010).

    Article  ADS  Google Scholar 

  52. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, J. Exp. Theor. Phys. 120, 664 (2015).

    Article  ADS  Google Scholar 

  53. N. N. Ageeva, I. L. Bronevoi, and A. N. Krivonosov, Semiconductors 42, 1395 (2008).

    Article  ADS  Google Scholar 

  54. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, Semiconductors 51, 565 (2017).

    Article  ADS  Google Scholar 

  55. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Pergamon, New York, 1977; Fizmatlit, Moscow, 2001).

  56. D. Bohm, Quantum Theory (Dover, New York, 1989).

    MATH  Google Scholar 

  57. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, Semiconductors 50, 1312 (2016).

    Article  ADS  Google Scholar 

  58. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, et al., Zh. Radioelektron. 4, 1 (2017). http://jre.cplire.ru/jre/apr17/3/text.pdf.

  59. Semiconductor Lasers I: Fundamental, Ed. by H. Takuma and M. Karino (OHM Publ., Tokyo, 1987).

    Google Scholar 

  60. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

    Google Scholar 

  61. Light Scattering in Solids, Ed. by M. Cardona (Springer, Berlin, 1982).

    Google Scholar 

  62. O. V. Misochko, A. A. Mel’nikov, S. V. Chekalin, and A. Yu. Bykov, JETP Lett. 102, 235 (2015).

    Article  ADS  Google Scholar 

  63. Nonlinear Spectroscopy: Proceedings, Ed. by N. Bloembergen (Elsevier, Amsterdam, 1977).

    Google Scholar 

  64. F. Crawford, Waves (McGraw-Hill, New York, 1968).

    Google Scholar 

  65. I. L. Bronevoi and A. N. Krivonosov, Semiconductors 33, 10 (1999).

    Article  ADS  Google Scholar 

  66. A. Pikovskii, M. Rozenblyum, and Yu. Kurts, Synchronization. Fundamental Non-Linear Phenomenon (Tekhnosfera, Moscow, 2003) [in Russian].

    Google Scholar 

  67. A. Piskarskas, A. Stabinis, A. Umbrasas, et al., Sov. J. Quantum Electron. 15, 1539 (1985).

    Article  Google Scholar 

Download references

Funding

This study was performed within the State assignment on the subject “Photonics-2” (registration no. 122041900161-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Bronevoi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ageeva, N.N., Bronevoi, I.L. & Krivonosov, A.N. Picosecond Modulation of the Fundamental Absorption of Light: Mapping of Oscillations and Depletion of Electron Population in the Field of Intrinsic Intense Stimulated Emission in an AlxGa1 – xAs–GaAs–AlxGa1 – xAs Heterostructure (Experimental Study). J. Exp. Theor. Phys. 135, 965–992 (2022). https://doi.org/10.1134/S1063776122120019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122120019

Navigation