Skip to main content
Log in

Dimensionless Physics: Continuation

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Several approaches to quantum gravity (including the model of superplastic vacuum; Diakonov tetrads emerging as the bilinear combinations of the fermionis fields; BF-theories of gravity; and effective acoustic metric) suggest that in general relativity the metric must have dimension 2, i.e., [gμν] = 1/[L]2, irrespective of the dimension of spacetime. This leads to the “dimensionless physics” discussed in [1]. Here we continue to exploit this unusual dimension of the metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. E. Volovik, J. Exp. Theor. Phys. 132, 727 (2021); arXiv: 2006.16821.

    Article  ADS  Google Scholar 

  2. F. R. Klinkhamer and G. E. Volovik, JETP Lett. 109, 364 (2019); arXiv: 1812.07046.

    Article  ADS  Google Scholar 

  3. I. E. Dzyaloshinskii and G. E. Volovick, Ann. Phys. 125, 67 (1980).

    Article  ADS  Google Scholar 

  4. J. Nissinen and G. E. Volovik, Phys. Rev. Res. 1, 023007 (2019); arXiv: 1812.03175.

  5. J. Nissinen, Ann. Phys. 447, 169139 (2022); arXiv: 2009.14184 [cond-mat.str-el].

  6. L. Gioia, Ch. Wang, and A. A. Burkov, Phys. Rev. Res. 3, 043067 (2021).

  7. D. Diakonov, arXiv: 1109.0091.

  8. A. A. Vladimirov and D. Diakonov, Phys. Rev. D 86, 104019 (2012).

  9. A. A. Vladimirov and D. Diakonov, Phys. Part. Nucl. 45, 800 (2014).

    Article  Google Scholar 

  10. Y. N. Obukhov and F. W. Hehl, Phys. Lett. B 713, 321 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  11. G. E. Volovik, Ann. Phys. 447, 168998 (2022); arXiv: 2205.15222 [physics.class-ph]. https://doi.org/10.1016/j.aop.2022.168998

  12. W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).

    Article  ADS  Google Scholar 

  13. M. Visser, Class. Quantum Grav. 15, 1767 (1998).

    Article  ADS  Google Scholar 

  14. J. Nissinen and G. E. Volovik, JETP Lett. 106, 234 (2017); arXiv: 1707.00905.

    Article  ADS  Google Scholar 

  15. V. Kabel, A.-C. de la Hamette, E. Castro-Ruiz, and C. Brukner, arXiv: 2207.00021.

  16. G. E. Volovik, JETP Lett. 90, 697 (2009); arXiv: 0904.1965.

    Article  ADS  Google Scholar 

  17. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  18. F. R. Klinkhamer and G. E. Volovik, JETP Lett. 81, 551 (2005); hep-ph/0505033.

    Article  ADS  Google Scholar 

  19. F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 77, 085015 (2008).

  20. F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 78, 063528 (2008).

  21. F. R. Klinkhamer and G. E. Volovik, Phys. Rev. D 105, 084066 (2022); arXiv: 2111.07962.

  22. F. R. Klinkhamer and G. E. Volovik, JETP Lett. 103, 627 (2016); arXiv: 1604.06060.

    Article  ADS  Google Scholar 

  23. F. R. Klinkhamer, arXiv: 2207.03453 [hep-th].

  24. E. P. Verlinde and M. R. Visser, arXiv: 2206.03161.

  25. T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Jacobson, arXiv: gr-qc/9404039.

  27. A. D. Sakharov, Sov. Phys. Dokl. 12, 1040 (1968).

    ADS  Google Scholar 

  28. V. P. Frolov, D. V. Fursaev, and A. I. Zelnikov, Nucl. Phys. B 486, 339 (1997).

    Article  ADS  Google Scholar 

  29. M. Visser, Mod. Phys. Lett. A 17, 977 (2002).

    Article  ADS  Google Scholar 

  30. G. E. Volovik, Mod. Phys. Lett. A 37, 2250034 (2022); arXiv: 2202.12743.

  31. G. E. Volovik, Springer Lect. Notes Phys. 718, 31 (2007); cond-mat/0601372.

  32. G. E. Volovik, Phys. Usp. 61, 89 (2018); arXiv: 1701.06435.

    Article  ADS  Google Scholar 

  33. J. Nissinen, T. T. Heikkilä, and G. E. Volovik, Phys. Rev. B 103, 245115 (2021); arXiv: 2008.02158.

  34. M. A. Zubkov, arXiv: 1909.08412 [gr-qc].

  35. G. Calcagni and S. Mercuri, Phys. Rev. D 79, 084004 (2009).

  36. M. Schönberg, Riv. Bras. Fis. 1, 91 (1971).

    Google Scholar 

  37. H. Urbantke, J. Math. Phys. 25, 2321 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  38. R. Capovilla, J. Dell, T. Jacobson, and L. Mason, Class. Quantum Grav. 8, 41 (1991).

    Article  ADS  Google Scholar 

  39. Yu. N. Obukhov and S. I. Tertychniy, Class. Quantum Grav. 13, 1623 (1996).

    Article  ADS  Google Scholar 

  40. F. W. Hehl and Yu. N. Obukhov, Foundations of Classical Electrodynamics (Birkhäuser, Boston, 2003).

    Book  MATH  Google Scholar 

  41. L. Friedel and S. Speziale, SIGMA 8, 032 (2012).

  42. R. Arnowitt, S. Deser, and C. W. Misner, Gen. Rel. Grav. 40, 1997 (2008).

    Article  ADS  Google Scholar 

  43. G. E. Volovik, JETP Lett. 43, 551 (1986).

    ADS  Google Scholar 

  44. G. E. Volovik, JETP Lett. 43, 693 (1986).

    ADS  Google Scholar 

  45. P. Horava, Phys. Rev. Lett. 95, 016405 (2005).

  46. T. P. Singh, Eur. Phys. J. Plus 137, 664 (2022).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work has been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 694248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Volovik.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volovik, G.E. Dimensionless Physics: Continuation. J. Exp. Theor. Phys. 135, 663–670 (2022). https://doi.org/10.1134/S106377612211019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612211019X

Navigation