Skip to main content
Log in

Electronic Structure of bcc Lithium under an External Impact

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An original technique for describing excited states of electrons in crystal structure has been considered by an example of lithium. It is shown that the electron spectrum in lithium changes only slightly at large values of lattice parameter (up to 8.77 Bohr radii). The lifetimes of excited electrons of external s and p states differ significantly at lattice parameters d < 8.77 Bohr radii. A metastable crystalline state of bcc lithium is found, which barely depends on the excitation power at a lattice constant equal to 6.55 Bohr radii, corresponding to the bcc lattice constant of lithium in the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. L. Companion, J. Chem. Phys. 50, 1165 (1969).

    Article  ADS  Google Scholar 

  2. B. T. Pickup, Proc. R. Soc. London, Ser. A 333, 69 (1973).

    Article  ADS  Google Scholar 

  3. I. Boustani, W. Pewestorf, P. Fantucci, et al., Phys. Rev. B 35, 9437 (1987).

    Article  ADS  Google Scholar 

  4. J. Blanc, V. Bonacic-Koutecky, M. Broyer, et al., J. Chem. Phys. 96, 1793 (1992).

    Article  ADS  Google Scholar 

  5. A. M. Sapse, P. von R. Schleyeret, et al., Lithium Chemistry: A Theoretical and Experimental Overview (Wiley-Interscience, New York, 1995).

    Google Scholar 

  6. R. Fournier, J. B. Y. Cheng, and A. Wong, J. Chem. Phys. 119, 9444 (2003).

    Article  ADS  Google Scholar 

  7. A. N. Alexandrova and A. I. Boldyrev, J. Chem. Theory Comput. 1, 566 (2005).

    Article  Google Scholar 

  8. B. G. A. Brito, E. L. Verde, G.-Q. Hai, et al., J. Mol. Model. 27, 207 (2021).

    Article  Google Scholar 

  9. L. Cheng and J. Yang, J. Chem. Phys. 138, 141101 (2013).

  10. B. G. A. Brito, L. Candido, J. N. T. Rabelo, et al., Chem. Phys. Lett. 616–617, 212 (2014).

    Article  ADS  Google Scholar 

  11. W. Y. Ching and J. Callaway, Phys. Rev. B 9, 5115 (1974).

    Article  ADS  Google Scholar 

  12. J. Callaway, X. Zou, and D. Bagayoko, Phys. Rev. B 27, 631 (1983).

    Article  ADS  Google Scholar 

  13. K. Doll, N. M. Harrison, and V. R. Saunders, J. Phys.: Condens. Matter 11, 5007 (1999).

    ADS  Google Scholar 

  14. R. Rousseau and D. Marx, Chem. Eur. J. 6, 2982 (2000).

    Article  Google Scholar 

  15. V. A. Popov, J. Exp. Theor. Phys. 83, 795 (1996).

    ADS  Google Scholar 

  16. V. A. Popov, Comput. Mater. Sci. 14, 67 (1999).

    Article  Google Scholar 

  17. V. A. Popov, Phys. Solid State 40, 1079 (1998).

    Article  ADS  Google Scholar 

  18. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966).

    Book  MATH  Google Scholar 

  19. L. Hedin, Phys. Rev. A 139, 796 (1965).

    Article  ADS  Google Scholar 

  20. L. Reining, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1344 (2017).

  21. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  ADS  Google Scholar 

  22. A. M. Sarry and M. F. Sarry, Phys. Solid State 54, 1315 (2012).

    Article  ADS  Google Scholar 

  23. A. N. Ipatov, J. Exp. Theor. Phys. 110, 199 (2010).

    Article  ADS  Google Scholar 

  24. H. Lischka, D. Nachtigallova, A. J. Aquino, et al., Chem. Rev. 118, 7293 (2018).

    Article  Google Scholar 

  25. C. F. Fischer, M. Godefroid, T. Brage, et al., J. Phys. B: At. Mol. Opt. Phys. 49, 182004 (2016).

  26. D. S. Levine, D. Hait, N. M. Tubman, et al., J. Chem. Theory Comput. 16, 2340 (2020).

    Article  Google Scholar 

  27. A. V. Popov, Phys. Solid State 50, 795 (2008).

    Article  ADS  Google Scholar 

  28. A. Popov, Mol. Phys. 117, 1833 (2019).

    Article  ADS  Google Scholar 

  29. A. V. Popov, Opt. Spectrosc. 93, 1 (2002).

    Article  ADS  Google Scholar 

  30. A. V. Popov, Can. J. Phys. 99, 387 (2021).

    Article  ADS  Google Scholar 

  31. A. Popov, Int. J. Quantum Chem. 119, e26045 (2019).

  32. A. Popov and V. Popov, J. Math. Chem. 58, 2399 (2020).

    Article  MathSciNet  Google Scholar 

  33. S. V. Chernov, Mat. Model., No. 1, 36 (1989).

  34. A. V. Popov and V. A. Popov, Tech. Phys. 64, 1102 (2019).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (FZMM-2020-0002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Popov or A. V. Popov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.A., Popov, A.V. Electronic Structure of bcc Lithium under an External Impact. J. Exp. Theor. Phys. 135, 708–713 (2022). https://doi.org/10.1134/S1063776122110127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122110127

Navigation