Skip to main content
Log in

Interaction of Solitons with the Boundary of a Ferromagnetic Plate

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Soliton states in a semi-infinite ferromagnetic film with partially pinned spins at its boundary are found and analyzed within the focusing nonlinear Schrödinger equation (NLSE). It is shown that solitons are divided into two classes. The first class includes magnetization oscillations with discrete frequencies localized near the film edge. The second class contains moving particle-like objects whose cores are strongly deformed at the film boundary; these objects are elastically reflected from this boundary, thus recovering the shape of solitons typical for a unbounded sample. A series of conservation laws for a wave field is obtained that ensures the localization of soliton oscillations near the boundary of the sample and the elastic reflection of moving solitons from this boundary. It is shown that a change in the phase of the internal precession of a soliton during reflection depends on the character of spin pinning at the edge of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. B. A. Kalinikos, N. G. Kovshikov, and A. N. Slavin, JETP Lett. 38, 413 (1983).

    ADS  Google Scholar 

  2. B. A. Kalinikos, N. G. Kovshikov, and A. N. Slavin, Sov. Phys. JETP 67, 89 (1988).

    Google Scholar 

  3. V. A. Kalinikos, N. G. Kovshikov, and A. N. Slavin, Phys. Rev. B. 42, 8658 (1990).

    Article  ADS  Google Scholar 

  4. A. B. Borisov and V. V. Kiselev, Quasi-One-Dimensional Magnetic Solitons (Fizmatlit, Moscow, 2014) [in Russian].

    Google Scholar 

  5. A. K. Zvezdin and A. F. Popkov, Sov. Phys. JETP 57, 350 (1983).

    ADS  Google Scholar 

  6. R. E. de Wames and T. Wolfram, J. Appl. Phys. 41, 987 (1970).

    Article  ADS  Google Scholar 

  7. V. V. Kiselev, A. P. Tankeev, and A. V. Kobelev, Physics of Metals and Metallography 82 (5), 458 (1996).

  8. B. A. Kalinikos, Izv. Vyssh. Uchebn. Zaved., Fiz. 25, 42 (1981).

    Google Scholar 

  9. G. B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974).

    MATH  Google Scholar 

  10. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method (Nauka, Moscow, 1980; Springer, Berlin, 1984).

  11. L. D. Faddeev and L. A. Takhtadzhyan, Hamiltonian Approach in the Theory of Solitons, Classics in Mathematics (Nauka, Moscow, 1986; Springer, Berlin, 1987).

  12. N. Akhmediev and A. Ankiewicz, Solitons: Non-linear Pulses and Beams (Fizmatlit, Moscow, 2003; Springer, New York, 1997).

  13. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, New York, 2003).

    Google Scholar 

  14. N. N. Rosanov, Dissipative Optical Solitons: From Micro- to Nano- and Atto- (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  15. H. C. Yuen and B. M. Lake, Adv. Appl. Mech. 22, 67 (1982).

    Article  Google Scholar 

  16. P. N. Bibikov and V. O. Tarasov, Sov. J. Theor. Math. Phys. 79, 570 (1989).

    Article  Google Scholar 

  17. V. O. Tarasov, Inverse Probl. 7, 435 (1991).

    Article  ADS  Google Scholar 

  18. I. T. Khabibullin, Sov. J. Theor. Math. Phys. 86, 28 (1991).

    Article  Google Scholar 

  19. A. S. Fokas, Phys. D (Amsterdam, Neth.) 35, 167 (1989).

  20. E. K. Sklyanin, Funkts. Anal. Pril. 21, 86 (1987).

    MathSciNet  Google Scholar 

  21. G. V. Dreiden, A. V. Porubov, A. M. Samsonov, and I. V. Semenova, Tech. Phys. 46, 505 (2001).

    Article  Google Scholar 

  22. A. B. Migdal, Qualitative Methods in Quantum Theory (Nauka, Moscow, 1979; Benjamin, Reading, 1977).

  23. A. M. Kosevich, E. A. Ivanov, and A. S. Kovalev, Nonlinear Magnetization Waves. Dynamic and Topological Solitons (Naukova Dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  24. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rep. 194, 117 (1990).

    Article  ADS  Google Scholar 

  25. V. V. Kiselev and A. P. Tankeyev, J. Phys.: Condens. Matter 8, 10219 (1996).

    ADS  Google Scholar 

Download references

Funding

This work was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project “Quant,” no. AAAAA18-118020190095-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kiselev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, V.V., Raskovalov, A.A. Interaction of Solitons with the Boundary of a Ferromagnetic Plate. J. Exp. Theor. Phys. 135, 676–689 (2022). https://doi.org/10.1134/S1063776122110085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122110085

Navigation