Skip to main content
Log in

On the Mass Function at the Inner Horizon of a Regular Black Hole

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Calculations of the inner mass function of the Hayward regular black hole with fluxes are reviewed and rederived. We present detailed calculations of the inner mass function in two forms of the Ori approach (the ingoing flux is continuous, the outgoing flux is modeled by a thin null shell) and compare them with calculations in Reissner–Nordström black hole. A formal reason of different results is discussed. The energy density of scalar perturbations propagating from the event horizon into the Hayward black hole measured by a free falling observer near the inner horizon is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that in the system of units we use, the gravitational constant is included in the parameter m, which in this case has the dimension of length.

REFERENCES

  1. J. M. Bardeen, in Proceedings of the 5th International Conference on General Relativity and Gravitation GR5 (Tbilisi, USSR, 1986), p. 174.

  2. I. Dymnikova, Class. Quantum Grav. 19, 725 (2002); arXiv: gr-qc/0112052.

  3. S. A. Hayward, Phys. Rev. Lett. 96, 031103 (2006).

  4. A. Bonanno and M. Reuter, Phys. Rev. D 62, 043008 (2000); arXiv: hep-th/0002196.

  5. S. Ansoldi, arXiv: 0802.0330.

  6. E. G. Brown, R. B. Mann, and L. Modesto, Phys. Rev. D 84, 104041 (2011).

  7. E. Ayon-Beato and A. García, Phys. Lett. B 493, 149 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  8. R. H. Price, Phys. Rev. D 5, 2419 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Simpson and R. Penrose, Int. J. Theor. Phys. 7, 183 (1973).

    Article  Google Scholar 

  10. J. M. McNamara, Proc. R. Soc. London, Ser. A 358, 499 (1978).

    Article  ADS  Google Scholar 

  11. J. M. McNamara, Proc. R. Soc. London, Ser. A 364, 121 (1978).

    Article  ADS  Google Scholar 

  12. Y. Gursel, I. D. Novikov, V. D. Sandberg, and A. A. Starobinski, Phys. Rev. D 19, 413 (1979).

    Article  ADS  Google Scholar 

  13. Y. Gursel, I. D. Novikov, V. D. Sandberg, and A. A. Starobinski, Phys. Rev. D 19, 1260 (1979).

    Article  ADS  Google Scholar 

  14. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford Univ. Press, New York, 1983).

    MATH  Google Scholar 

  15. A. Ori, Phys. Rev. D 55, 4860 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Ori, Phys. Rev. D 57, 2621 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  17. E. Poisson and W. Israel, Phys. Rev. D 41, 1796 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  18. P. C. Vaidia, Proc. Ind. Acad. Sci. A 33, 264 (1951).

    Article  ADS  Google Scholar 

  19. T. Dray and G. 't Hooft, Commun. Math. Phys. 99, 613 (1985).

    Article  ADS  Google Scholar 

  20. I. H. Redmount, Prog. Theor. Phys. 73, 1401 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Bonanno, S. Droz, W. Israel, and S. M. Morsink, arXiv: gr-qc/9411050.

  22. L. M. Burko, Phys. Rev. Lett. 79, 4958 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  23. L. M. Burko and A. Ori, Phys. Rev. D 57, R7084 (1998).

    Article  ADS  Google Scholar 

  24. P. R. Brady, Prog. Theor. Phys. Suppl. 136, 29 (1999).

    Article  ADS  Google Scholar 

  25. A. Ori, Phys. Rev. Lett. 67, 789 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  26. W. G. Anderson, P. R. Brady, W. Israel, and S. M. Morsink, Phys. Rev. Lett. 70, 1041 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  27. C. Barrabes and W. Israel, Phys. Rev. D 43, 1129 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Carballo-Rubio, F. di Filippo, S. Liberati, C. Pacilio, and M. Visser, J. High Energy Phys., No. 07, 23 (2018).

  29. R. Carballo-Rubio, F. di Filippo, S. Liberati, C. Pacilio, and M. Visser, arXiv: 2101.05006.

  30. A. Bonanno, A.-P. Khosravi, and F. Saueressig, Phys. Rev. D 103, 124027 (2021).

  31. E. Poisson, arXiv: gr-qc/0207101.

  32. R. A. Matzner, N. Zamorano, and V. D. Sandberg, Phys. Rev. D 19, 2821 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  33. A. J. Hamilton and P. P. Avelino, Phys. Rep. 495, 1 (2010).

    Article  ADS  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank M. Smolyakov and I. Volobuev for discussion and valuable comments. The research was carried out within the framework of the scientific program of the National Center for Physics and Mathematics, the project “Particle Physics and Cosmology.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Iofa.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iofa, M.Z. On the Mass Function at the Inner Horizon of a Regular Black Hole. J. Exp. Theor. Phys. 135, 647–654 (2022). https://doi.org/10.1134/S1063776122110048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122110048

Navigation