Skip to main content
Log in

Features of Physical Observables of a Strongly Correlated Superconducting Nanowire with Rashba Spin–Orbit Interaction

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze the behavior of caloric characteristics and the electron component of the spin polarization of excitations in the regime of strong electron correlations of a nanowire, which is characterized by induced superconductivity of the extended s-type symmetry, the Rashba spin–orbit interaction, and the Zeeman splitting of on-site energy. The problem has been analyzed using the density matrix renormalization group method. It is shown that for unambiguous identification of different phases (the topologically trivial phase with edge excitations and without them, as well as topologically nontrivial phases with one or several pairs of Majorana modes), it is insufficient to analyze each of the aforementioned characteristics separately; it is necessary to consider their features simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

    Article  ADS  Google Scholar 

  2. A. Yu. Kitaev, Phys. Usp. 44, s131 (2001).

    Article  Google Scholar 

  3. V. Kaladzhyan and C. Bena, Phys. Rev. B 100, 081106 (2019).

  4. Q. Wang, C.-C. Liu, Y.-M. Lu, et al., Phys. Rev. Lett. 121, 186801 (2018).

  5. X. Zhu, Phys. Rev. B 91, 205134 (2018).

  6. C. Nayak, S. H. Simon, A. Stern, et al., Rev. Mod. Phys. 80, 1083 (2008).

    Article  ADS  Google Scholar 

  7. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).

  8. S. R. Elliot and M. Franz, Rev. Mod. Phys. 87, 137 (2015).

    Article  ADS  Google Scholar 

  9. M. Sato and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017).

  10. V. V. Val’kov, M. S. Shustin, S. V. Aksenov, et al., Usp. Fiz. Nauk 192, 3 (2022, in press).

  11. A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).

    Article  ADS  Google Scholar 

  12. S. Das Sarma, C. Nayak, and S. Tewari, Phys. Rev. B 73, 220502(R) (2006).

  13. A. Pustogow, Y. Luo, A. Chronister, et al., Nature (London, U.K.) 574, 72 (2019).

    Article  ADS  Google Scholar 

  14. S.-I. Suzuki, M. Sato, and Y. Tanaka, Phys. Rev. B 101, 054505 (2020).

  15. J. D. Sau and S. Tewari, Phys. Rev. B 86, 104509 (2012).

  16. V. P. Mineev, Phys. Usp. 60, 121 (2017).

    Article  ADS  Google Scholar 

  17. R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010).

  18. Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).

  19. V. Mourik, K. Zuo, S. M. Frolov, et al., Science (Washington, DC, U. S.) 336, 1003 (2012).

    Article  ADS  Google Scholar 

  20. M. T. Deng, C. L. Yu, G. Y. Huang, et al., Nano Lett. 12, 6414 (2012).

    Article  ADS  Google Scholar 

  21. F. Nichele, A. C. C. Drachmann, A. M. Whiticar, et al., Phys. Rev. Lett. 119, 136803 (2017).

  22. H. Zhang, C.-X. Liu, S. Gazibegovic, et al., Nature (London, U.K.) 556, 74 (2018).

    Article  ADS  Google Scholar 

  23. P. Yu, J. Chen, M. Gomanko, et al., Nat. Phys. 17, 482 (2021).

    Article  Google Scholar 

  24. S. Vaitiekenas, Y. Liu, P. Krogstrup, et al., Nat. Phys. 17, 43 (2020).

    Article  Google Scholar 

  25. C. Moore, T. D. Stanescu, and S. Tewari, Phys. Rev. B 97, 165302 (2018).

  26. C. Reeg, O. Dmytruk, D. Chevallier et al., Phys. Rev. B 98, 245407 (2018).

  27. H. Zhang, C.-X. Liu, S. Gazibegovic, et al., Nature (London, U.K.) 581, E4 (2020).

  28. Y. Sato, S. Matsuo, C.-H. Hsu, et al., Phys. Rev. B 99, 155304 (2019).

  29. R. Thomale, S. Rachel, and P. Schmitteckert, Phys. Rev. B 88, 161103(R) (2013).

  30. Y.-H. Chan, C.-K. Chiu, and K. Sun, Phys. Rev. B 92, 104514 (2015).

  31. N. M. Gergs, L. Fritz, and D. Schurich, Phys. Rev. B 93, 075129 (2016).

  32. J.-J. Miao, H.-K. Jin, and Y. Zhou, Sci. Rep. 8, 488 (2018).

    Article  ADS  Google Scholar 

  33. G. Kells, Phys. Rev. B 92, 081401(R) (2015).

  34. G. Kells, Phys. Rev. B 92, 155434 (2015).

  35. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

    Article  ADS  Google Scholar 

  36. S. R. White, Phys. Rev. B 48, 10345 (1993).

    Article  ADS  Google Scholar 

  37. U. Schollwock, Rev. Mod. Phys. 77, 259 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  38. U. Schollwock, Ann. Phys. 326, 96 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  39. V. V. Val’kov, V. A. Mitskan, and M. S. Shustin, JETP Lett. 106, 798 (2017).

    Article  ADS  Google Scholar 

  40. V. V. Val’kov, M. Yu. Kagan, and S. V. Aksenov, J. Phys.: Condens. Matter 31, 225301 (2019).

  41. V. V. Val’kov and S. V. Aksenov, J. Low Temp. Phys. 43, 437 (2017).

    Article  Google Scholar 

  42. V. V. Val’kov and S. V. Aksenov, J. Magn. Magn. Mater. 440, 112 (2017).

    Article  ADS  Google Scholar 

  43. D. Sticlet, C. Bena, and P. Simon, Phys. Rev. Lett. 108, 096802 (2012).

  44. P. Szumniak, D. Chevallier, D. Loss, et al., Phys. Rev. B 96, 041401(R) (2017).

  45. M. Serina, D. Loss, and J. Klinovaja, Phys. Rev. B 98, 035419 (2018).

  46. S. V. Aksenov, A. O. Zlotnikov, and M. S. Shustin, Phys. Rev. B 101, 125431 (2020).

  47. E. M. Stoudenmire, J. Alicea, O. A. Starykh, et al., Phys. Rev. B 84, 014503 (2011).

  48. M. R. Zirnbauer, J. Math. Phys. 37, 4986 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  49. A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).

    Article  ADS  Google Scholar 

  50. P. Heinzner, A. Huckleberry, and M. R. Zirnbauer, Commun. Math. Phys. 257, 725 (2005).

    Article  ADS  Google Scholar 

  51. A. P. Schnyder, S. Ryu, A. Furusaki, et al., Phys. Rev. B 78, 195125 (2008).

  52. A. P. Schnyder, S. Ryu, A. Furusaki, et al., AIP Conf. Proc. 1134, 10 (2009). https://doi.org/10.1063/1.3149481

    Article  ADS  Google Scholar 

  53. A. Yu. Kitaev, AIP Conf. Proc. 1134, 22 (2009). https://doi.org/10.1063/1.3149495

    Article  ADS  Google Scholar 

  54. W. DeGottardi, M. Thakurathi, S. Vishveshwara, et al., Phys. Rev. B 88, 165111 (2013).

  55. A. M. Turner, F. Pollmann, and E. Berg, Phys. Rev. B 83, 075102 (2011).

  56. M. S. Shustin and S. V. Aksenov, Phys. Solid State 63 (2021, in press).

  57. G. Goldstein and C. Chamon, Phys. Rev. B 86, 115122 (2012).

  58. A. D. Fedoseev, J. Exp. Theor. Phys. 128, 125 (2019).

    Article  ADS  Google Scholar 

  59. M. Leijnse and K. Flensberg, Phys. Rev. Lett. 107, 210502 (2011).

  60. Y. Nagai, H. Nakamura, and M. Machida, J. Phys. Soc. Jpn. 83, 064703 (2014).

  61. L. Zhu, M. Garst, A. Rosch, et al., Phys. Rev. Lett. 91, 066404 (2003).

  62. M. Garst and A. Rosch, Phys. Rev. B 72, 205129 (2005).

  63. D. J. Thouless, Phys. Rep. 13, 93 (1974).

    Article  ADS  Google Scholar 

  64. N. C. Murphy, R. Wortis, and W. A. Atkinson, Phys. Rev. B 83, 184206 (2011).

  65. M. Malki and G. S. Uhrig, Eur. Phys. Lett. 127, 27001 (2019).

    Article  ADS  Google Scholar 

  66. A. D. Fedoseev, J. Exp. Theor. Phys. 133, 71 (2021).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.D. Fedoseev for discussions.

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 19-02-00348 and 20-02-00015), the administration of the Krasnoyarsk Kray, the Krasnoyarsk Kray Science Foundation (project nos. 20-42-243001 and 20-42-243005), and the Council for Grants from the President of Russian Federation (projects nos. MK-1641.2020.2 and MK-4687.2022.1). One of the authors (Sh.M.S.) thanks the Foundation for the Development of Theoretical Physics and Mathematics “BASIS.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Shustin or S. V. Aksenov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

This article was prepared for the special issue of Journal of Experimental and Theoretical Physics dedicated to the 95th birthday of Professor E.I. Rashba.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shustin, M.S., Aksenov, S.V. Features of Physical Observables of a Strongly Correlated Superconducting Nanowire with Rashba Spin–Orbit Interaction. J. Exp. Theor. Phys. 135, 500–512 (2022). https://doi.org/10.1134/S1063776122100181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122100181

Navigation