Skip to main content
Log in

Magnetoexciton Condensate in a Hall Dielectric

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A review of experimental studies of the properties of a recently discovered new coherent collective state, a magnetoexciton condensate, is presented. Condensation occurs at temperatures below 1 K in a Fermi system, a quantum Hall insulator (a filling factor of ν = 2), as a result of the formation of a dense ensemble of long-lived triplet spin cyclotron magnetoexcitons—composite bosons. The condensed phase interacts coherently with an external electromagnetic field and demonstrates the ability of fast nondiffusive propagation over macroscopic distances and high spatial coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. This is a component with positive projection SZ onto the direction of the magnetic field, because the g factor of the electron in GaAs is negative.

REFERENCES

  1. W. Kohn, Phys. Rev. 123, 1242 (1961).

    Article  ADS  Google Scholar 

  2. Yu. A. Bychkov, S. V. Iordanskii, and G. M. Eliashberg, JETP Lett. 33, 143 (1981).

    ADS  Google Scholar 

  3. C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 (1984).

    Article  ADS  Google Scholar 

  4. L. V. Kulik, I. V. Kukushkin, S. Dickmann, et al., Phys. Rev. B 72, 073304 (2005).

  5. S. Dickmann and I. V. Kukushkin, Phys. Rev. B 71, 241310 (2005).

  6. L. V. Kulik, A. V. Gorbunov, A. S. Zhuravlev, et al., Sci. Rep. 5, 10354 (2015).

    Article  ADS  Google Scholar 

  7. S. M. Dickmann, Phys. Rev. Lett. 110, 166801 (2013).

  8. L. V. Kulik, A. V. Gorbunov, S. M. Dickmann, and V. B. Timofeev, Phys. Usp. 62, 865 (2019).

    Article  ADS  Google Scholar 

  9. I. V. Lerner and Yu. E. Lozovik, Sov. Phys. JETP 53, 763 (1981).

    ADS  Google Scholar 

  10. P. C. Hohenberg, Phys. Rev. 158, 383 (1967).

    Article  ADS  Google Scholar 

  11. N. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

    Article  ADS  Google Scholar 

  12. V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1970);

    ADS  MathSciNet  Google Scholar 

  13. Sov. Phys. JETP 34, 610 (1971).

  14. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  15. D. J. Bishop and J. D. Reppy, Phys. Rev. Lett. 40, 1727 (1978);

    Article  ADS  Google Scholar 

  16. Phys. Rev. B 22, 5171 (1980).

  17. H. S. J. van der Zant, H. A. Rijken, and J. E. Mooij, J. Low Temp. Phys. 82, 67 (1991).

    Article  ADS  Google Scholar 

  18. Z. Hadzibabic, P. Krüger, M. Cheneau, et al., Nature (London, U.K.) 441, 1118 (2006).

    Article  ADS  Google Scholar 

  19. P. Cladé, C. Ryu, A. Ramanathan, et al., Phys. Rev. Lett. 102, 170401 (2009).

  20. G. Roumpos, M. D. Fraser, A. Löffler, et al., Nat. Phys. 7, 129 (2011).

    Article  Google Scholar 

  21. J. Kasprzak, M. Richard, S. Kundermann, et al., Nature (London, U.K.) 443, 409 (2006).

    Article  ADS  Google Scholar 

  22. S. O. Demokritov, V. E. Demidov, O. Dzyapko, et al., Nature (London, U.K.) 443, 430 (2006).

    Article  ADS  Google Scholar 

  23. M. H. Anderson, J. R. Ensher, M. R. Matthews, et al., Science (Washington, DC, U. S.) 269, 198 (1995).

    Article  ADS  Google Scholar 

  24. K. B. Davis, M.-O. Mewes, M. R. Andrews, et al., Phys. Rev. Lett. 75, 3969 (1995).

    Article  ADS  Google Scholar 

  25. S. A. Moskalenko, M. A. Liberman, E. S. Moskalenko, E. V. Dumanov, and I. V. Podlesny, Phys. Solid State 55, 1563 (2013).

    Article  ADS  Google Scholar 

  26. Yu. E. Lozovik and V. I. Yudson, Sov. Phys. JETP 44, 389 (1976).

    ADS  Google Scholar 

  27. V. B. Timofeev, A. V. Gorbunov, and D. A. Demin, J. Low Temp. Phys. 37, 179 (2011).

    Article  Google Scholar 

  28. A. V. Gorbunov and V. B. Timofeev, JETP Lett. 96, 138 (2012).

    Article  ADS  Google Scholar 

  29. D. D. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 28, 885 (1972).

    Article  ADS  Google Scholar 

  30. J. P. Eisenstein and A. H. MacDonald, Nature (London, U.K.) 432, 691 (2004).

    Article  ADS  Google Scholar 

  31. C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92, 040403 (2004).

  32. A. S. Zhuravlev, S. Dickmann, L. V. Kulik, and I. V. Kukushkin, Phys. Rev. B 89, 161301(R) (2014).

  33. A. S. Zhuravlev, V. A. Kuznetsov, L. V. Kulik, et al., Phys. Rev. Lett. 117, 196802 (2016).

  34. V. A. Kuznetsov, L. V. Kulik, M. D. Velikanov, et al., Phys. Rev. B 98, 205303 (2018).

  35. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1964).

    MATH  Google Scholar 

  36. G. Roumpos, M. Lohse, W. H. Nitsche, et al., Proc. Natl. Acad. Sci. U. S. A. 109, 6467 (2012).

    Article  ADS  Google Scholar 

  37. L. V. Kulik, S. M. Dickmann, I. K. Drozdov, et al., Phys. Rev. B 79, 121310 (2009).

  38. L. V. Kulik, A. S. Zhuravlev, S. M. Dickmann, et al., Nat. Commun. 7, 13499 (2016).

    Article  ADS  Google Scholar 

  39. S. Dickmann, JETP Lett. 109, 63 (2019).

    Article  ADS  Google Scholar 

  40. S. Dickmann, Lith. J. Phys. 59, 79 (2019).

    Article  Google Scholar 

  41. L. V. Kulik, V. A. Kuznetsov, A. S. Zhuravlev, et al., Sci. Rep. 8, 10948 (2018).

    Article  ADS  Google Scholar 

  42. A. V. Gorbunov, L. V. Kulik, V. A. Kuznetsov, A. S. Zhuravlev, A. V. Larionov, V. B. Timofeev and I. V. Kukushkin, JETP Lett. 106, 682 (2017).

    Article  ADS  Google Scholar 

  43. L. V. Kulik, A. V. Gorbunov, A. S. Zhuravlev, et al., Appl. Phys. Lett. 114, 062403 (2019).

  44. A. V. Gorbunov, V. A. Kuznetsov, A. S. Zhuravlev, et al., Ann. Phys. 531, 1800443 (2019).

  45. A. S. Zhuravlev, V. A. Kuznetsov, A. V. Gorbunov, L. V. Kulik, V. B. Timofeev, and I. V. Kukushkin, JETP Lett. 110, 284 (2019).

    Article  ADS  Google Scholar 

  46. S. Dickmann and B. D. Kaysin, JETP Lett. 114, 585 (2021).

    Article  ADS  Google Scholar 

  47. A. V. Gorbunov, A. V. Larionov, L. V. Kulik, and V. B. Timofeev, JETP Lett. 114, 417 (2021).

    Article  ADS  Google Scholar 

  48. A. V. Gorbunov and V. B. Timofeev, Bull. Russ. Acad. Sci.: Phys. 86, 380 (2022).

    Article  Google Scholar 

  49. W. H. Nitsche, N. Y. Kim, G. Roumpos, et al., Phys. Rev. A 93, 053622 (2016).

  50. W. H. Nitsche, N. Y. Kim, G. Roumpos, et al., Phys. Rev. B 90, 205430 (2014).

  51. L. V. Keldysh, Contemp. Phys. 27, 395 (1986).

    Article  ADS  Google Scholar 

  52. J. R. Anglin and W. Ketterle, Nature (London, U.K.) 416, 211 (2002).

    Article  ADS  Google Scholar 

  53. J. E. Avron, I. W. Herbst, and B. Simon, Ann. Phys. 114, 431 (1978).

    Article  ADS  Google Scholar 

  54. I. V. Kukushkin, V. D. Kulakovskii, and V. B. Timofeev, JETP Lett. 34, 34 (1981).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gorbunov.

Ethics declarations

This article was prepared for the special issue of Journal of Experimental and Theoretical Physics dedicated to the 95th birthday of Professor E.I. Rashba.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbunov, A.V., Timofeev, V.B. Magnetoexciton Condensate in a Hall Dielectric. J. Exp. Theor. Phys. 135, 458–472 (2022). https://doi.org/10.1134/S1063776122100156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122100156

Navigation