Skip to main content
Log in

Momentum Alignment and the Optical Valley Hall Effect in Low-Dimensional Dirac Materials

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the momentum alignment of photoexcited carriers and the optical control of valley population in gapless and gapped two-dimensional Dirac materials. The trigonal warping effect leads to the spatial separation of charge carriers belonging to different valleys upon linearly-polarized high-frequency photoexcitation. Valley separation in gapped materials can be detected by measuring the degree of circular polarization of band-edge photoluminescence at different sides of the sample or light spot (optical valley Hall effect). We demonstrate that the celebrated Rashba effect, caused by substrate-induced system asymmetry, leads to a strong anisotropy in the low-energy part of the spectrum. This results in optical valley separation by a linearly-polarized excitation at much lower frequencies compared to the high-energy trigonal warping regime. We also show that the momentum alignment phenomenon explains the giant enhancement of near-band-edge interband optical transitions in narrow-gap carbon nanotubes and graphene nanoribbons independent of the mechanism of the gap formation. These enhanced transitions can be used in terahertz emitters based on low-dimensional Dirac materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, Science (Washington, DC, U. S.) 320, 1308 (2008).

    Article  ADS  Google Scholar 

  2. R. R. Hartmann and M. E. Portnoi, Optoelectronic Properties of Carbon-based Nanostructures: Steering Electrons in Graphene by Electromagnetic Fields (LAP Lambert Academic, Saarbrücken, 2011); R. R. Hartmann, Ph. D. Thesis (Univ. of Exeter, 2010).

  3. D. N. Mirlin, in Optical Orientation, Ed. by F. Meier and B. P. Zakharchenya (North-Holland, Amsterdam, 1984), Chap. 4.

    Google Scholar 

  4. I. A. Merkulov, V. I. Perel’, and M. E. Portnoi, Sov. Phys. JETP 72, 669 (1991).

    ADS  Google Scholar 

  5. D. N. Mirlin and V. I. Perel’, Semicond. Sci. Technol. 7, 1221 (1992).

    Article  ADS  Google Scholar 

  6. J. A. Kash, M. Zachau, M. A. Tischler, and U. Ekenberg, Phys. Rev. Lett. 69, 2260 (1992).

    Article  ADS  Google Scholar 

  7. M. E. Portnoi, Sov. Phys. Semicond. 25, 1294 (1991).

    Google Scholar 

  8. V. I. Perel’ and M. E. Portnoi, Sov. Phys. Semicond. 26, 1185 (1992).

    Google Scholar 

  9. E. A. Avrutin, I. E. Chebunina, I. A. Eliachevitch, S. A. Gurevich, M. E. Portnoi, and G. E. Shtengel, Semicond. Sci. Technol. 8, 80 (1993).

    Article  ADS  Google Scholar 

  10. M. V. Durnev and S. A. Tarasenko, Phys. Rev. B 103, 165411 (2021).

  11. L. E. Golub, S. A. Tarasenko, M. V. Entin, and L. I. Magarill, Phys. Rev. B 84, 195408 (2011).

  12. D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).

  13. A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, 2D Mater. 2, 022001 (2015).

  14. S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Small 11, 640 (2015).

    Article  Google Scholar 

  15. Z. Ni, E. Minamitani, Y. Ando, and S. Watanabe, Phys. Rev. B 96, 075427 (2017).

  16. J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, and X. Xu, Nat. Rev. Mater. 1, 16055 (2016).

    Article  ADS  Google Scholar 

  17. J. F. I. Žutić and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  ADS  Google Scholar 

  18. A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Nature Phys. 3, 172 (2007).

    Article  ADS  Google Scholar 

  19. E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960).

    Google Scholar 

  20. Yu. A. Bychkov and E. I. Rashba, J. Phys. C: Solid State Phys. 17, 6039 (1984).

    Article  ADS  Google Scholar 

  21. G. Bihlmayer, O. Rader, and R. Winkler, New J. Phys. 17, 050202 (2015).

  22. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).

  23. E. I. Rashba, Phys. Rev. B 79, 161409 (2009).

  24. F. Kuemmeth and E. I. Rashba, Phys. Rev. B 80, 241409 (2009).

  25. D. Marchenko, A. Varykhalov, M. Scholz, G. Bihlmayer, E. Rashba, A. Rybkin, A. Shikin, and O. Rader, Nat. Commun. 3, 1232 (2012).

    Article  ADS  Google Scholar 

  26. A. Kavokin, G. Malpuech, and M. Glazov, Phys. Rev. Lett. 95, 136601 (2005).

  27. C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, Nat. Phys. 3, 628 (2007).

    Article  Google Scholar 

  28. O. Bleu, D. D. Solnyshkov, and G. Malpuech, Phys. Rev. B 96, 165432 (2017).

  29. G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. van den Brink, Phys. Rev. B 76, 073103 (2007).

  30. S. Y. Zhou, G.-H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, D.-H. Lee, F. Guinea, A. H. Castro Neto, and A. Lanzara, Nat. Mater. 6, 770 (2007).

    Article  ADS  Google Scholar 

  31. M. F. Craciun, I. Khrapach, M. D. Barnes, and S. Russo, J. Phys.: Condens. Matter 25, 423201 (2013).

  32. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, 17033 (2017).

    Article  ADS  Google Scholar 

  33. M. E. Portnoi, V. A. Saroka, R. R. Hartmann, and O. V. Kibis, in Proceedings of the 2015 IEEE Comput. Society Annual Symposium on VLSI (IEEE, 2015), p. 456.

  34. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Book  MATH  Google Scholar 

  35. J. Sichau, M. Prada, T. Anlauf, T. J. Lyon, B. Bosnjak, L. Tiemann, and R. H. Blick, Phys. Rev. Lett. 122, 046403 (2019).

  36. W. Yao, D. Xiao, and Q. Niu, Phys. Rev. B 77, 235406 (2008).

  37. A. Mattausch and O. Pankratov, Phys. Rev. Lett. 99, 076802 (2007).

  38. C. C. Liu, H. Jiang, and Y. Ya, Phys. Rev. B 84, 195430 (2011).

  39. V. A. Saroka, M. V. Shuba, and M. E. Portnoi, Phys. Rev. B 95, 155438 (2017).

  40. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, Phys. Rev. Lett. 100, 117401 (2008).

  41. M. Koshino and T. Ando, Phys. Rev. B 77, 115313 (2008).

  42. V. Ryzhii, M. Ryzhii, and T. Otsuji, J. Appl. Phys 101, 083114 (2007).

  43. T. Stauber, N. M. R. Peres, and A. K. Geim, Phys. Rev. B 78, 085432 (2008).

  44. M. E. Portnoi, Semiconductors 27, 294 (1993).

    ADS  Google Scholar 

  45. D. S. Kainth, M. N. Khalid, and H. P. Hughes, Solid State Commun. 122, 351 (2002).

    Article  ADS  Google Scholar 

  46. I. A. Merkulov, V. I. Perel, and M. E. Portnoi, Superlatt. Microstruct. 10, 371 (1991).

    Article  ADS  Google Scholar 

  47. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

  48. X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Nat. Phys. 10, 343 (2014).

    Article  Google Scholar 

  49. E. McCann, K. Kechedzhi, V. I. Fal’ko, H. Suzuura, T. Ando, and B. L. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).

  50. F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008).

  51. L. Brey and H. Fertig, Phys. Rev. B 73, 235411 (2006).

  52. M. I. D’yakonov and V. I. Perel’, Sov. Phys. JETP Lett. 13, 467 (1971).

    ADS  Google Scholar 

  53. M. I. Dyakonov and V. I. Perel’, Phys. Lett. A 35, 459 (1971).

    Article  ADS  Google Scholar 

  54. J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).

    Article  ADS  Google Scholar 

  55. M. Zarea and N. Sandler, Phys. Rev. B 79, 165442 (2009).

  56. G. G. Samsonidze, R. Saito, A. Jorio, M. A. Pimenta, A. G. Souza Filho, A. Grüneis, G. Dresselhaus, and M. S. Dresselhausa, J. Nanosci. Nanotechnol. 3, 431 (2003).

    Article  Google Scholar 

  57. C. L. Kane and E. Mele, Phys. Rev. Lett. 78, 1932 (1997).

    Article  ADS  Google Scholar 

  58. C. Zhou, J. Kong, and H. Dai, Phys. Rev. Lett. 84, 5604 (2000).

    Article  ADS  Google Scholar 

  59. M. Ouyang, J. L. Huang, C. L. Cheung, and C. M. Lieber, Science (Washington, DC, U. S.) 292, 702 (2001).

    Article  ADS  Google Scholar 

  60. F. L. Shyu and M. F. Lin, J. Phys. Soc. Jpn. 71, 1820 (2002).

    Article  ADS  Google Scholar 

  61. P. N. D’yachkov, Russ. J. Inorg. Chem. 63, 55 (2018).

    Article  Google Scholar 

  62. M. E. Portnoi, M. Rosenau da Costa, O. V. Kibis, and I. A. Shelykh, Int. J. Mod. Phys. B 23, 2846 (2009).

    Article  ADS  Google Scholar 

  63. R. Moradian, R. Chegel, and S. Behzad, Phys. E (Amsterdam, Neth.) 42, 1850 (2010).

  64. R. Chegel and S. Behzad, Opt. Commun. 313, 406 (2014).

    Article  ADS  Google Scholar 

  65. R. R. Hartmann and M. E. Portnoi, IOP Conf. Ser.: Mater. Sci. Eng. 79, 012014 (2015).

  66. O. V. Kibis, M. Rosenau da Costa, and M. E. Portnoi, Nano Lett. 7, 3414 (2007).

    Article  ADS  Google Scholar 

  67. R. R. Hartmann, J. Kono, and M. E. Portnoi, Nanotechnology 25, 322001 (2014).

  68. C. T. White, J. Li, D. Gunlycke, and J. W. Mintmire, Nano Lett. 7, 825 (2007).

    Article  ADS  Google Scholar 

  69. V. A. Saroka, A. L. Pushkarchuk, S. A. Kuten, and M. E. Portnoi, J. Saudi Chem. Soc. 22, 985 (2018).

    Article  Google Scholar 

  70. H. Zheng, Z. Wang, T. Luo, Q. Shi, and J. Chen, Phys. Rev. B 75, 165414 (2007).

  71. L. A. Chernozatonskii, P. B. Sorokin, and J. W. Brüning, Appl. Phys. Lett. 91, 183103 (2007).

  72. L. A. Chernozatonskii and P. B. Sorokin, J. Phys. Chem. C 114, 3225 (2010).

    Article  Google Scholar 

  73. R. R. Hartmann, V. A. Saroka, and M. E. Portnoi, J. Appl. Phys. 125, 151607 (2019).

  74. T. Kampfrath, K. von Volkmann, C. M. Aguirre, P. Desjardins, R. Martel, M. Krenz, C. Frischkorn, M. Wolf, and L. Perfetti, Phys. Rev. Lett. 101, 267403 (2008).

  75. A. Ugawa, A. G. Rinzler, and D. B. Tanner, Phys. Rev. B 60, 11305 (1999).

    Article  ADS  Google Scholar 

  76. G. Y. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, Phys. Rev. B 81, 205423 (2010).

  77. M. V. Shuba, A. G. Paddubskaya, A. O. Plyushch, P. P. Kuzhir, G. Y. Slepyan, S. A. Maksimenko, V. K. Ksenevich, P. Buka, D. Seliuta, I. Kasalynas, J. Macutkevic, G. Valusis, C. Thomsen, and A. Lakhtakia, Phys. Rev. B 85, 165435 (2012).

  78. L. Ren, Q. Zhang, C. L. Pint, A. K. Wójcik, M. Bunney, T. Arikawa, I. Kawayama, M. Tonouchi, R. H. Hauge, A. A. Belyanin, and J. Kono, Phys. Rev. B 87, 161401 (2013).

  79. J.-Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Üstünel, S. Braig, T. A. Arias, P. W. Brouwer, and P. L. McEuen, Nano Lett. 4, 517 (2004).

    Article  ADS  Google Scholar 

  80. C. Chang, Y. Huang, C. Lu, J. Ho, T. Li, and M. Lin, Carbon 44, 508 (2006).

    Article  Google Scholar 

  81. V. A. Saroka, K. G. Batrakov, V. A. Demin, and L. A. Chernozatonskii, J. Phys.: Condens. Matter 27, 145305 (2015).

  82. L. V. Titova, C. L. Pint, Q. Zhang, R. H. Hauge, J. Kono, and F. A. Hegmann, Nano Lett. 15, 3267 (2015).

    Article  ADS  Google Scholar 

  83. J. Shaver and J. Kono, Laser Photon. Rev. 1, 260 (2007).

    Article  ADS  Google Scholar 

  84. R. Denk, M. Hohage, P. Zeppenfeld, J. Cai, C. A. Pignedoli, H. Söde, R. Fasel, X. Feng, K. Müllen, S. Wang, D. Prezzi, A. Ferretti, A. Ruini, E. Molinari, and P. Ruffieux, Nat. Commun. 5, 4253 (2014).

    Article  ADS  Google Scholar 

  85. R. R. Hartmann, I. A. Shelykh, and M. E. Portnoi, Phys. Rev. B 84, 035437 (2011).

  86. R. R. Hartmann and M. E. Portnoi, Phys. Rev. A 95, 062110 (2017).

  87. A. Srivastava, H. Htoon, V. I. Klimov, and J. Kono, Phys. Rev. Lett. 101, 087402 (2008).

  88. X. He, H. Htoon, S. K. Doorn, W. H. P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux, and C. Voisin, Nat. Mater. 17, 843 (2018).

    Article  ADS  Google Scholar 

  89. W. Gao, X. Li, M. Bamba, and J. Kono, Nat. Photon. 12, 362 (2018).

    Article  ADS  Google Scholar 

  90. D. Headland, T. Niu, E. Carrasco, D. Abbott, S. Sriram, M. Bhaskaran, C. Fumeaux, and W. Withayachumnankul, IEEE J. Sel. Top. Quantum Electron. 23, 8500918 (2017).

  91. H. Zhang, H. Lin, K. Sun, L. Chen, Y. Zagranyarski, N. Aghdassi, S. Duhm, Q. Li, D. Zhong, Y. Li, K. Müllen, H. Fuchs, and L. Chi, J. Am. Chem. Soc. 137, 4022 (2015).

    Article  Google Scholar 

  92. W. Gao and J. Kono, R. Soc. Open Sci. 6, 181605 (2019).

Download references

Funding

This work was supported by the EU FP7 ITN NOTEDEV (FP7-607521), EU H2020 RISE projects CoExAN (H2020-644076), TERASSE (H2020-823878) and DiSeTCom (H2020-823728). R.R.H. acknowledges financial support from URCO (14 F 1TAY20-1TAY21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Portnoi.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

This article was prepared for the special issue of Journal of Experimental and Theoretical Physics dedicated to the 95th birthday of Professor E.I. Rashba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saroka, V.A., Hartmann, R.R. & Portnoi, M.E. Momentum Alignment and the Optical Valley Hall Effect in Low-Dimensional Dirac Materials. J. Exp. Theor. Phys. 135, 513–530 (2022). https://doi.org/10.1134/S1063776122100107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122100107

Navigation